scispace - formally typeset
Search or ask a question
Author

Antonio Torralba

Other affiliations: Vassar College, Nvidia, Carleton College
Bio: Antonio Torralba is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Computer science & Object detection. The author has an hindex of 119, co-authored 388 publications receiving 84607 citations. Previous affiliations of Antonio Torralba include Vassar College & Nvidia.


Papers
More filters
Journal ArticleDOI
TL;DR: CNNs are a promising formal model of human visual object recognition Combined with fMRI and MEG, they provide an integrated spatiotemporal and algorithmically explicit view of the first few hundred milliseconds of object recognition.
Abstract: The neural machinery underlying visual object recognition comprises a hierarchy of cortical regions in the ventral visual stream. The spatiotemporal dynamics of information flow in this hierarchy of regions is largely unknown. Here we tested the hypothesis that there is a correspondence between the spatiotemporal neural processes in the human brain and the layer hierarchy of a deep convolutional neural network (CNN). We presented 118 images of real-world objects to human participants (N=15) while we measured their brain activity with functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG). We trained an 8 layer (5 convolutional layers, 3 fully connected layers) CNN to predict 683 object categories with 900K training images from the ImageNet dataset. We obtained layer-specific CNN responses to the same 118 images. To compare brain-imaging data with the CNN in a common framework, we used representational similarity analysis. The key idea is that if two conditions evoke similar patterns in brain imaging data, they should also evoke similar patterns in the computer model. We thus determined 'where' (fMRI) and 'when' (MEG) the CNNs predicted brain activity. We found a correspondence in hierarchy between cortical regions, processing time, and CNN layers. Low CNN layers predicted MEG activity early and high layers relatively later; low CNN layers predicted fMRI activity in early visual regions, and high layers in late visual regions. Surprisingly, the correspondence between CNN layer hierarchy and cortical regions held for the ventral and dorsal visual stream. Results were dependent on amount of training and type of training material. Our results show that CNNs are a promising formal model of human visual object recognition. Combined with fMRI and MEG, they provide an integrated spatiotemporal and algorithmically explicit view of the first few hundred milliseconds of object recognition. Meeting abstract presented at VSS 2015.

9 citations

Journal ArticleDOI
01 May 2022-iScience
TL;DR: Schlenker et al. as mentioned in this paper presented a scientific roadmap for advancing the understanding of communication of whales that can be built further upon as a template to decipher other forms of animal and non-human communication.

8 citations

Journal ArticleDOI
TL;DR: This study identifies the ‘medium-blur’ condition, images approximately 32 pixels on a side, to be the limit for accurate 3-D shape perception and finds that degradation affects the perceived slant of point-estimates making images look flatter as degradation increases.
Abstract: How little do we need to perceive 3-D shape in monocular natural images? The shape-from-texture and shape-from-shading perspectives would motivate that 3-D perception vanishes once low-level cues are disrupted. Is this the case in human vision? Or can top – down influences salvage the percept? In this study we probe this question by employing a gauge-figure paradigm similar to that used by Koenderink et al (1992, Perception & Psychophysics52 487 – 496). Subjects were presented degraded natural images and instructed to make local assessments of slant and tilt at various locations thereby quantifying their internal 3-D percept. Analysis of subjects' responses reveals recognition to be a significant influence thereby allowing subjects to perceive 3-D shape at high levels of degradation. Specifically, we identify the ‘medium-blur’ condition, images approximately 32 pixels on a side, to be the limit for accurate 3-D shape perception. In addition, we find that degradation affects the perceived slant of point-es...

8 citations

Posted Content
TL;DR: In this paper, a saliency-based distortion layer for convolutional neural networks is proposed to improve the spatial sampling of input data for a given task, which has the effect of creating distorted, caricature-like intermediate images.
Abstract: We introduce a saliency-based distortion layer for convolutional neural networks that helps to improve the spatial sampling of input data for a given task. Our differentiable layer can be added as a preprocessing block to existing task networks and trained altogether in an end-to-end fashion. The effect of the layer is to efficiently estimate how to sample from the original data in order to boost task performance. For example, for an image classification task in which the original data might range in size up to several megapixels, but where the desired input images to the task network are much smaller, our layer learns how best to sample from the underlying high resolution data in a manner which preserves task-relevant information better than uniform downsampling. This has the effect of creating distorted, caricature-like intermediate images, in which idiosyncratic elements of the image that improve task performance are zoomed and exaggerated. Unlike alternative approaches such as spatial transformer networks, our proposed layer is inspired by image saliency, computed efficiently from uniformly downsampled data, and degrades gracefully to a uniform sampling strategy under uncertainty. We apply our layer to improve existing networks for the tasks of human gaze estimation and fine-grained object classification. Code for our method is available in: this http URL

8 citations

Book ChapterDOI
TL;DR: This work proposes 3D INterpreter Network (3D-INN), an end-to-end framework which sequentially estimates 2D keypoint heatmaps and 3D object structure, trained on both real 2D-annotated images and synthetic 3D data, and achieves state-of-the-art performance on both 2DKeypoint estimation and3D structure recovery.
Abstract: Understanding 3D object structure from a single image is an important but difficult task in computer vision, mostly due to the lack of 3D object annotations in real images. Previous work tackles this problem by either solving an optimization task given 2D keypoint positions, or training on synthetic data with ground truth 3D information. In this work, we propose 3D INterpreter Network (3D-INN), an end-to-end framework which sequentially estimates 2D keypoint heatmaps and 3D object structure, trained on both real 2D-annotated images and synthetic 3D data. This is made possible mainly by two technical innovations. First, we propose a Projection Layer, which projects estimated 3D structure to 2D space, so that 3D-INN can be trained to predict 3D structural parameters supervised by 2D annotations on real images. Second, heatmaps of keypoints serve as an intermediate representation connecting real and synthetic data, enabling 3D-INN to benefit from the variation and abundance of synthetic 3D objects, without suffering from the difference between the statistics of real and synthesized images due to imperfect rendering. The network achieves state-of-the-art performance on both 2D keypoint estimation and 3D structure recovery. We also show that the recovered 3D information can be used in other vision applications, such as 3D rendering and image retrieval.

7 citations


Cited by
More filters
Proceedings Article
03 Dec 2012
TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Abstract: We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overriding in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

73,978 citations

Proceedings ArticleDOI
Jia Deng1, Wei Dong1, Richard Socher1, Li-Jia Li1, Kai Li1, Li Fei-Fei1 
20 Jun 2009
TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Abstract: The explosion of image data on the Internet has the potential to foster more sophisticated and robust models and algorithms to index, retrieve, organize and interact with images and multimedia data. But exactly how such data can be harnessed and organized remains a critical problem. We introduce here a new database called “ImageNet”, a large-scale ontology of images built upon the backbone of the WordNet structure. ImageNet aims to populate the majority of the 80,000 synsets of WordNet with an average of 500-1000 clean and full resolution images. This will result in tens of millions of annotated images organized by the semantic hierarchy of WordNet. This paper offers a detailed analysis of ImageNet in its current state: 12 subtrees with 5247 synsets and 3.2 million images in total. We show that ImageNet is much larger in scale and diversity and much more accurate than the current image datasets. Constructing such a large-scale database is a challenging task. We describe the data collection scheme with Amazon Mechanical Turk. Lastly, we illustrate the usefulness of ImageNet through three simple applications in object recognition, image classification and automatic object clustering. We hope that the scale, accuracy, diversity and hierarchical structure of ImageNet can offer unparalleled opportunities to researchers in the computer vision community and beyond.

49,639 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

40,257 citations

Book
18 Nov 2016
TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Abstract: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

38,208 citations

Journal ArticleDOI
TL;DR: A large, deep convolutional neural network was trained to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes and employed a recently developed regularization method called "dropout" that proved to be very effective.
Abstract: We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0%, respectively, which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overfitting in the fully connected layers we employed a recently developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

33,301 citations