scispace - formally typeset
Search or ask a question
Author

António Torres Marques

Bio: António Torres Marques is an academic researcher from University of Porto. The author has contributed to research in topics: Composite laminates & Delamination. The author has an hindex of 32, co-authored 152 publications receiving 3532 citations. Previous affiliations of António Torres Marques include Faculdade de Engenharia da Universidade do Porto & National Institute of Statistics and Geography.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the evolution of mechanical properties during degradation is discussed based on experimental data, and constitutive models that describe the mechanical behavior during degradation are proposed and experimentally validated, which can be adapted and used in other biodegradable materials, and can be considered fundamental tools in the design of regenerative medical devices.
Abstract: The aliphatic polyesters are widely used in biomedical applications since they are susceptible to hydrolytic and/or enzymatic chain cleavage, leading to α-hydroxyacids, generally metabolized in the human body. This is particularly useful for many biomedical applications, especially, for temporary mechanical supports in regenerative medical devices. Ideally, the degradation should be compatible with the tissue recovering. In this work, the evolution of mechanical properties during degradation is discussed based on experimental data. The decrease of tensile strength of PLA-PCL fibers follows the same trend as the decrease of molecular weight, and so it can also be modeled using a first order equation. For each degradation stage, hyperelastic models such as Neo-Hookean, Mooney-Rivlin and second reduced order, allow a reasonable approximation of the material behavior. Based on this knowledge, constitutive models that describe the mechanical behavior during degradation are proposed and experimentally validated. The proposed theoretical models and methods may be adapted and used in other biodegradable materials, and can be considered fundamental tools in the design of regenerative medical devices where strain energy is an important requirement, such as, for example, ligaments, cartilage and stents.

208 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented a new methodology to measure the crack resistance curves associated with fiberdominated failure modes in polymer-matrix composites, which is based on the identification of the crack tip location using Digital Image Correlation and the calculation of the J-integral directly from the test data using a simple expression derived for cross-ply composite laminates.

175 citations

Journal ArticleDOI
TL;DR: In this article, numerical and experimental analyses for predicting the damage in carbon-epoxy laminates, subjected to low velocity impact, were performed using a drop weight testing machine and X-rays radiography and the deply technique.
Abstract: It is well known that composite laminates are easily damaged by low velocity impact. This event causes internal delaminations that can drastically reduce the compressive strength of laminates. In this study, numerical and experimental analyses for predicting the damage in carbon–epoxy laminates, subjected to low velocity impact, were performed. Two different laminates (04,904)s and (02,±452,902)s were tested using a drop weight testing machine. Damage characterisation was carried out using X-rays radiography and the deply technique. The developed numerical model is based on a special shell finite element that guarantees interlaminar shear stresses continuity between different oriented layers, which was considered fundamental to predict delaminations. In order to predict the occurrence of matrix failure and the delaminated areas, a new failure criterion based on experimental observations and on other developed criteria, is included. A good agreement between experimental and numerical analysis for shape and orientation of delaminations was obtained. For delaminated areas, reasonable agreement was obtained.

170 citations

Journal ArticleDOI
TL;DR: In this paper, mode-I double-cantilever beam (DCB) tests were performed on carbon/epoxy [0°/90°]12 specimens.

164 citations

Journal ArticleDOI
TL;DR: In this article, a new fully three-dimensional failure criteria for polymer composites reinforced by unidirectional fibers is proposed, where the effect of ply thickness on the material strength is accounted for.

149 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An overview of the virtual crack closure technique is presented, the approach used is discussed, the history summarized, and insight into its applications provided.
Abstract: : An overview of the virtual crack closure technique is presented. The approach used is discussed, the history summarized, and insight into its applications provided. Equations for two-dimensional quadrilateral elements with linear and quadratic shape functions are given. Formula for applying the technique in conjuction with three-dimensional solid elements as well as plate/shell elements are also provided. Necessary modifications for the use of the method with geometrically nonlinear finite element analysis and corrections required for elements at the crack tip with different lengths and widths are discussed. The problems associated with cracks or delaminations propagating between different materials are mentioned briefly, as well as a strategy to minimize these problems. Due to an increased interest in using a fracture mechanics based approach to assess the damage tolerance of composite structures in the design phase and during certification, the engineering problems selected as examples and given as references focus on the application of the technique to components made of composite materials.

1,354 citations

Journal ArticleDOI
TL;DR: An overview of various biomedical applications of polymer-composite materials reported in the literature over the last 30 years is presented in this paper, where the critical issues and scientific challenges that require further research and development of polymer composite materials for their increased acceptance in the biomedical industry are also highlighted.

1,352 citations

Journal ArticleDOI
TL;DR: In this paper, a methodology to determine the constitutive parameters for the simulation of progressive delamination is proposed, which accounts for the size of a cohesive finite element and the length of the cohesive zone to ensure the correct dissipation of energy.

1,314 citations

Journal ArticleDOI
TL;DR: In this paper, a new decohesion element with the capability of dealing with crack propagation under mixed-mode loading is proposed and demonstrated, which is used at the interface between solid finite elements to model the initiation and non-self-similar growth of delaminations in composite materials.
Abstract: A new decohesion element with the capability of dealing with crack propagation under mixed-mode loading is proposed and demonstrated. The element is used at the interface between solid finite elements to model the initiation and non-self-similar growth of delaminations in composite materials. A single relative displacement-based damage parameter is applied in a softening law to track the damage state of the interface and to prevent the restoration of the cohesive state during unloading. The softening law is applied in the three-parameter Benzeggagh-Kenane mode interaction criterion to predict mixed-mode delamination propagation. To demonstrate the accuracy of the predictions, steady-state delamination growth is simulated for quasi-static loading of various single mode and mixed-mode delamination test specimens and the results are compared with experimental data.

1,285 citations

01 Jun 2002
TL;DR: In this article, a decohesion element with mixed-mode capability is proposed and demonstrated at the interface between solid finite elements to model the initiation and non-self-similar growth of delaminations.
Abstract: A new decohesion element with mixed-mode capability is proposed and demonstrated. The element is used at the interface between solid finite elements to model the initiation and non-self-similar growth of delaminations. A single relative displacement-based damage parameter is applied in a softening law to track the damage state of the interface and to prevent the restoration of the cohesive state during unloading. The softening law for mixed-mode delamination propagation can be applied to any mode interaction criterion such as the two-parameter power law or the three-parameter Benzeggagh-Kenane criterion. To demonstrate the accuracy of the predictions and the irreversibility capability of the constitutive law, steady-state delamination growth is simulated for quasistatic loading-unloading cycles of various single mode and mixed-mode delamination test specimens.

909 citations