scispace - formally typeset
Search or ask a question
Author

Antonis A. Argyros

Bio: Antonis A. Argyros is an academic researcher from University of Crete. The author has contributed to research in topics: Pose & Video tracking. The author has an hindex of 37, co-authored 215 publications receiving 7134 citations. Previous affiliations of Antonis A. Argyros include Foundation for Research & Technology – Hellas & University of Bonn.


Papers
More filters
Proceedings ArticleDOI
01 Jan 2011
TL;DR: A novel solution to the problem of recovering and tracking the 3D position, orientation and full articulation of a human hand from markerless visual observations obtained by a Kinect sensor is presented.
Abstract: We present a novel solution to the problem of recovering and tracking the 3D position, orientation and full articulation of a human hand from markerless visual observations obtained by a Kinect sensor. We treat this as an optimization problem, seeking for the hand model parameters that minimize the discrepancy between the appearance and 3D structure of hypothesized instances of a hand model and actual hand observations. This optimization problem is effectively solved using a variant of Particle Swarm Optimization (PSO). The proposed method does not require special markers and/or a complex image acquisition setup. Being model based, it provides continuous solutions to the problem of tracking hand articulations. Extensive experiments with a prototype GPU-based implementation of the proposed method demonstrate that accurate and robust 3D tracking of hand articulations can be achieved in near real-time (15Hz).

1,009 citations

Journal ArticleDOI
TL;DR: Sba as mentioned in this paper is a C/C++ software package for generic bundle adjustment with high efficiency and flexibility regarding parameterization, which can be used to achieve considerable computational savings when applied to bundle adjustment.
Abstract: Bundle adjustment constitutes a large, nonlinear least-squares problem that is often solved as the last step of feature-based structure and motion estimation computer vision algorithms to obtain optimal estimates. Due to the very large number of parameters involved, a general purpose least-squares algorithm incurs high computational and memory storage costs when applied to bundle adjustment. Fortunately, the lack of interaction among certain subgroups of parameters results in the corresponding Jacobian being sparse, a fact that can be exploited to achieve considerable computational savings. This article presents sba, a publicly available C/C++ software package for realizing generic bundle adjustment with high efficiency and flexibility regarding parameterization.

901 citations

Proceedings ArticleDOI
06 Nov 2011
TL;DR: An optimization problem whose solution is the 26-DOF hand pose together with the pose and model parameters of the manipulated object is formulated, which is the first to demonstrate how hand-object interaction can be exploited as a context that facilitates hand pose estimation, instead of being considered as a complicating factor.
Abstract: Due to occlusions, the estimation of the full pose of a human hand interacting with an object is much more challenging than pose recovery of a hand observed in isolation. In this work we formulate an optimization problem whose solution is the 26-DOF hand pose together with the pose and model parameters of the manipulated object. Optimization seeks for the joint hand-object model that (a) best explains the incompleteness of observations resulting from occlusions due to hand-object interaction and (b) is physically plausible in the sense that the hand does not share the same physical space with the object. The proposed method is the first that solves efficiently the continuous, full-DOF, joint hand-object tracking problem based solely on markerless multicamera input. Additionally, it is the first to demonstrate how hand-object interaction can be exploited as a context that facilitates hand pose estimation, instead of being considered as a complicating factor. Extensive quantitative and qualitative experiments with simulated and real world image sequences as well as a comparative evaluation with a state-of-the-art method for pose estimation of isolated hands, support the above findings.

325 citations

Proceedings ArticleDOI
16 Jun 2012
TL;DR: The proposed method is the first to attempt and achieve the articulated motion tracking of two strongly interacting hands and employs Particle Swarm Optimization, an evolutionary, stochastic optimization method with the objective of finding the two-hands configuration that best explains observations provided by an RGB-D sensor.
Abstract: We propose a method that relies on markerless visual observations to track the full articulation of two hands that interact with each-other in a complex, unconstrained manner. We formulate this as an optimization problem whose 54-dimensional parameter space represents all possible configurations of two hands, each represented as a kinematic structure with 26 Degrees of Freedom (DoFs). To solve this problem, we employ Particle Swarm Optimization (PSO), an evolutionary, stochastic optimization method with the objective of finding the two-hands configuration that best explains observations provided by an RGB-D sensor. To the best of our knowledge, the proposed method is the first to attempt and achieve the articulated motion tracking of two strongly interacting hands. Extensive quantitative and qualitative experiments with simulated and real world image sequences demonstrate that an accurate and efficient solution of this problem is indeed feasible.

277 citations

Journal ArticleDOI
TL;DR: The principles and system components for navigation and manipulation in domestic environments, the interaction paradigm and its implementation in a multimodal user interface, the core robot tasks, as well as the results from the user studies are described.

263 citations


Cited by
More filters
Proceedings ArticleDOI
07 Jun 2015
TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

40,257 citations

Posted Content
TL;DR: This work presents an approach to efficiently detect the 2D pose of multiple people in an image using a nonparametric representation, which it refers to as Part Affinity Fields (PAFs), to learn to associate body parts with individuals in the image.
Abstract: We present an approach to efficiently detect the 2D pose of multiple people in an image. The approach uses a nonparametric representation, which we refer to as Part Affinity Fields (PAFs), to learn to associate body parts with individuals in the image. The architecture encodes global context, allowing a greedy bottom-up parsing step that maintains high accuracy while achieving realtime performance, irrespective of the number of people in the image. The architecture is designed to jointly learn part locations and their association via two branches of the same sequential prediction process. Our method placed first in the inaugural COCO 2016 keypoints challenge, and significantly exceeds the previous state-of-the-art result on the MPII Multi-Person benchmark, both in performance and efficiency.

3,791 citations

Proceedings ArticleDOI
27 Jun 2016
TL;DR: This work proposes a new SfM technique that improves upon the state of the art to make a further step towards building a truly general-purpose pipeline.
Abstract: Incremental Structure-from-Motion is a prevalent strategy for 3D reconstruction from unordered image collections. While incremental reconstruction systems have tremendously advanced in all regards, robustness, accuracy, completeness, and scalability remain the key problems towards building a truly general-purpose pipeline. We propose a new SfM technique that improves upon the state of the art to make a further step towards this ultimate goal. The full reconstruction pipeline is released to the public as an open-source implementation.

3,050 citations

Journal ArticleDOI
TL;DR: OpenPose as mentioned in this paper uses Part Affinity Fields (PAFs) to learn to associate body parts with individuals in the image, which achieves high accuracy and real-time performance.
Abstract: Realtime multi-person 2D pose estimation is a key component in enabling machines to have an understanding of people in images and videos. In this work, we present a realtime approach to detect the 2D pose of multiple people in an image. The proposed method uses a nonparametric representation, which we refer to as Part Affinity Fields (PAFs), to learn to associate body parts with individuals in the image. This bottom-up system achieves high accuracy and realtime performance, regardless of the number of people in the image. In previous work, PAFs and body part location estimation were refined simultaneously across training stages. We demonstrate that a PAF-only refinement rather than both PAF and body part location refinement results in a substantial increase in both runtime performance and accuracy. We also present the first combined body and foot keypoint detector, based on an internal annotated foot dataset that we have publicly released. We show that the combined detector not only reduces the inference time compared to running them sequentially, but also maintains the accuracy of each component individually. This work has culminated in the release of OpenPose, the first open-source realtime system for multi-person 2D pose detection, including body, foot, hand, and facial keypoints.

2,911 citations

Journal ArticleDOI
TL;DR: The Structure-from-Motion (SfM) method as mentioned in this paper solves the camera pose and scene geometry simultaneously and automatically, using a highly redundant bundle adjustment based on matching features in multiple overlapping, offset images.

2,901 citations