scispace - formally typeset
Search or ask a question
Author

Antony L. Hosking

Bio: Antony L. Hosking is an academic researcher from Australian National University. The author has contributed to research in topics: Garbage collection & Java. The author has an hindex of 27, co-authored 101 publications receiving 4480 citations. Previous affiliations of Antony L. Hosking include Purdue University & University of Colorado Boulder.


Papers
More filters
Proceedings ArticleDOI
16 Oct 2006
TL;DR: This paper recommends benchmarking selection and evaluation methodologies, and introduces the DaCapo benchmarks, a set of open source, client-side Java benchmarks that improve over SPEC Java in a variety of ways, including more complex code, richer object behaviors, and more demanding memory system requirements.
Abstract: Since benchmarks drive computer science research and industry product development, which ones we use and how we evaluate them are key questions for the community. Despite complex runtime tradeoffs due to dynamic compilation and garbage collection required for Java programs, many evaluations still use methodologies developed for C, C++, and Fortran. SPEC, the dominant purveyor of benchmarks, compounded this problem by institutionalizing these methodologies for their Java benchmark suite. This paper recommends benchmarking selection and evaluation methodologies, and introduces the DaCapo benchmarks, a set of open source, client-side Java benchmarks. We demonstrate that the complex interactions of (1) architecture, (2) compiler, (3) virtual machine, (4) memory management, and (5) application require more extensive evaluation than C, C++, and Fortran which stress (4) much less, and do not require (3). We use and introduce new value, time-series, and statistical metrics for static and dynamic properties such as code complexity, code size, heap composition, and pointer mutations. No benchmark suite is definitive, but these metrics show that DaCapo improves over SPEC Java in a variety of ways, including more complex code, richer object behaviors, and more demanding memory system requirements. This paper takes a step towards improving methodologies for choosing and evaluating benchmarks to foster innovation in system design and implementation for Java and other managed languages.

1,561 citations

Proceedings ArticleDOI
14 Mar 2007
TL;DR: New language constructs to support open nesting in Java are described, and it is demonstrated how these constructs can be mapped efficiently to existing STM data structures, demonstrating how open nesting can enhance application scalability.
Abstract: Transactional memory (TM) promises to simplify concurrent programming while providing scalability competitive to fine-grained locking. Language-based constructs allow programmers to denote atomic regions declaratively and to rely on the underlying system to provide transactional guarantees along with concurrency. In contrast with fine-grained locking, TM allows programmers to write simpler programs that are composable and deadlock-free.TM implementations operate by tracking loads and stores to memory and by detecting concurrent conflicting accesses by different transactions. By automating this process, they greatly reduce the programmer's burden, but they also are forced to be conservative. Incertain cases, conflicting memory accesses may not actually violate the higher-level semantics of a program, and a programmer may wish to allow seemingly conflicting transactions to execute concurrently.Open nested transactions enable expert programmers to differentiate between physical conflicts, at the level of memory, and logical conflicts that actually violate application semantics. A TMsystem with open nesting can permit physical conflicts that are not logical conflicts, and thus increase concurrency among application threads.Here we present an implementation of open nested transactions in a Java-based software transactional memory (STM)system. We describe new language constructs to support open nesting in Java, and we discuss new abstract locking mechanisms that a programmer can use to prevent logical conflicts. We demonstrate how these constructs can be mapped efficiently to existing STM data structures. Finally, we evaluate our system on a set of Java applications and data structures, demonstrating how open nesting can enhance application scalability.

212 citations

Book
17 Aug 2011
TL;DR: The Garbage Collection Handbook: The Art of Automatic Memory Management brings together a wealth of knowledge gathered by automatic memory management researchers and developers over the past fifty years and compares the most important approaches and state-of-the-art techniques in a single, accessible framework as discussed by the authors.
Abstract: Published in 1996, Richard Joness Garbage Collection was a milestone in the area of automatic memory management. The field has grown considerably since then, sparking a need for an updated look at the latest state-of-the-art developments. The Garbage Collection Handbook: The Art of Automatic Memory Management brings together a wealth of knowledge gathered by automatic memory management researchers and developers over the past fifty years. The authors compare the most important approaches and state-of-the-art techniques in a single, accessible framework. The book addresses new challenges to garbage collection made by recent advances in hardware and software. It explores the consequences of these changes for designers and implementers of high performance garbage collectors. Along with simple and traditional algorithms, the book covers parallel, incremental, concurrent, and real-time garbage collection. Algorithms and concepts are often described with pseudocode and illustrations. The nearly universal adoption of garbage collection by modern programming languages makes a thorough understanding of this topic essential for any programmer. This authoritative handbook gives expert insight on how different collectors work as well as the various issues currently facing garbage collectors. Armed with this knowledge, programmers can confidently select and configure the many choices of garbage collectors. Web ResourceThe books online bibliographic database at www.gchandbook.org includes over 2,500 garbage collection-related publications. Continually updated, it contains abstracts for some entries and URLs or DOIs for most of the electronically available ones. The database can be searched online or downloaded as BibTeX, PostScript, or PDF.

211 citations

Proceedings ArticleDOI
12 Oct 2005
TL;DR: The definition and implementation of safe futures for Java are explored and it is indicated that for programs with modest mutation rates on shared data, applications can use futures to profitably exploit parallelism, without sacrificing safety.
Abstract: A future is a simple and elegant abstraction that allows concurrency to be expressed often through a relatively small rewrite of a sequential program. In the absence of side-effects, futures serve as benign annotations that mark potentially concurrent regions of code. Unfortunately, when computation relies heavily on mutation as is the case in Java, its meaning is less clear, and much of its intended simplicity lost.This paper explores the definition and implementation of safe futures for Java. One can think of safe futures as truly transparent annotations on method calls, which designate opportunities for concurrency. Serial programs can be made concurrent simply by replacing standard method calls with future invocations. Most significantly, even though some parts of the program are executed concurrently and may indeed operate on shared data, the semblance of serial execution is nonetheless preserved. Thus, program reasoning is simplified since data dependencies present in a sequential program are not violated in a version augmented with safe futures.Besides presenting a programming model and API for safe futures, we formalize the safety conditions that must be satisfied to ensure equivalence between a sequential Java program and its future-annotated counterpart. A detailed implementation study is also provided. Our implementation exploits techniques such as object versioning and task revocation to guarantee necessary safety conditions. We also present an extensive experimental evaluation of our implementation to quantify overheads and limitations. Our experiments indicate that for programs with modest mutation rates on shared data, applications can use futures to profitably exploit parallelism, without sacrificing safety.

195 citations

Proceedings ArticleDOI
31 Oct 1992
TL;DR: A range of write barrier implementations are examined and their relative performance within a generation scavenging garbage collector for Smalltalk is evaluated.
Abstract: Generational garbage collectors are able to achieve very small pause times by concentrating on the youngest (most recently allocated) objects when collecting, since objects have been observed to die young in many systems. Generational collectors must keep track of all pointers from older to younger generations, by “monitoring” all stores into the heap. This write barrier has been implemented in a number of ways, varying essentially in the granularity of the information observed and stored. Here we examine a range of write barrier implementations and evaluate their relative performance within a generation scavenging garbage collector for Smalltalk.

161 citations


Cited by
More filters
Journal Article
TL;DR: AspectJ as mentioned in this paper is a simple and practical aspect-oriented extension to Java with just a few new constructs, AspectJ provides support for modular implementation of a range of crosscutting concerns.
Abstract: Aspect] is a simple and practical aspect-oriented extension to Java With just a few new constructs, AspectJ provides support for modular implementation of a range of crosscutting concerns. In AspectJ's dynamic join point model, join points are well-defined points in the execution of the program; pointcuts are collections of join points; advice are special method-like constructs that can be attached to pointcuts; and aspects are modular units of crosscutting implementation, comprising pointcuts, advice, and ordinary Java member declarations. AspectJ code is compiled into standard Java bytecode. Simple extensions to existing Java development environments make it possible to browse the crosscutting structure of aspects in the same kind of way as one browses the inheritance structure of classes. Several examples show that AspectJ is powerful, and that programs written using it are easy to understand.

2,947 citations

Proceedings ArticleDOI
16 Oct 2006
TL;DR: This paper recommends benchmarking selection and evaluation methodologies, and introduces the DaCapo benchmarks, a set of open source, client-side Java benchmarks that improve over SPEC Java in a variety of ways, including more complex code, richer object behaviors, and more demanding memory system requirements.
Abstract: Since benchmarks drive computer science research and industry product development, which ones we use and how we evaluate them are key questions for the community. Despite complex runtime tradeoffs due to dynamic compilation and garbage collection required for Java programs, many evaluations still use methodologies developed for C, C++, and Fortran. SPEC, the dominant purveyor of benchmarks, compounded this problem by institutionalizing these methodologies for their Java benchmark suite. This paper recommends benchmarking selection and evaluation methodologies, and introduces the DaCapo benchmarks, a set of open source, client-side Java benchmarks. We demonstrate that the complex interactions of (1) architecture, (2) compiler, (3) virtual machine, (4) memory management, and (5) application require more extensive evaluation than C, C++, and Fortran which stress (4) much less, and do not require (3). We use and introduce new value, time-series, and statistical metrics for static and dynamic properties such as code complexity, code size, heap composition, and pointer mutations. No benchmark suite is definitive, but these metrics show that DaCapo improves over SPEC Java in a variety of ways, including more complex code, richer object behaviors, and more demanding memory system requirements. This paper takes a step towards improving methodologies for choosing and evaluating benchmarks to foster innovation in system design and implementation for Java and other managed languages.

1,561 citations

Book
29 Sep 2011
TL;DR: The Fifth Edition of Computer Architecture focuses on this dramatic shift in the ways in which software and technology in the "cloud" are accessed by cell phones, tablets, laptops, and other mobile computing devices.
Abstract: The computing world today is in the middle of a revolution: mobile clients and cloud computing have emerged as the dominant paradigms driving programming and hardware innovation today. The Fifth Edition of Computer Architecture focuses on this dramatic shift, exploring the ways in which software and technology in the "cloud" are accessed by cell phones, tablets, laptops, and other mobile computing devices. Each chapter includes two real-world examples, one mobile and one datacenter, to illustrate this revolutionary change. Updated to cover the mobile computing revolutionEmphasizes the two most important topics in architecture today: memory hierarchy and parallelism in all its forms.Develops common themes throughout each chapter: power, performance, cost, dependability, protection, programming models, and emerging trends ("What's Next")Includes three review appendices in the printed text. Additional reference appendices are available online.Includes updated Case Studies and completely new exercises.

984 citations

Journal Article
TL;DR: This paper introduces the transactional locking II (TL2) algorithm, a software transactional memory (STM) algorithm based on a combination of commit-time locking and a novel global version-clock based validation technique, which is ten-fold faster than a single lock.
Abstract: The transactional memory programming paradigm is gaining momentum as the approach of choice for replacing locks in concurrent programming. This paper introduces the transactional locking II (TL2) algorithm, a software transactional memory (STM) algorithm based on a combination of commit-time locking and a novel global version-clock based validation technique. TL2 improves on state-of-the-art STMs in the following ways: (1) unlike all other STMs it fits seamlessly with any systems memory life-cycle, including those using malloc/free (2) unlike all other lock-based STMs it efficiently avoids periods of unsafe execution, that is, using its novel version-clock validation, user code is guaranteed to operate only on consistent memory states, and (3) in a sequence of high performance benchmarks, while providing these new properties, it delivered overall performance comparable to (and in many cases better than) that of all former STM algorithms, both lock-based and non-blocking. Perhaps more importantly, on various benchmarks, TL2 delivers performance that is competitive with the best hand-crafted fine-grained concurrent structures. Specifically, it is ten-fold faster than a single lock. We believe these characteristics make TL2 a viable candidate for deployment of transactional memory today, long before hardware transactional support is available.

893 citations

Book ChapterDOI
18 Sep 2006
TL;DR: TL2 as mentioned in this paper is a software transactional memory (STM) algorithm based on a combination of commit-time locking and a novel global version-clock based validation technique, which is ten times faster than a single lock.
Abstract: The transactional memory programming paradigm is gaining momentum as the approach of choice for replacing locks in concurrent programming. This paper introduces the transactional locking II (TL2) algorithm, a software transactional memory (STM) algorithm based on a combination of commit-time locking and a novel global version-clock based validation technique. TL2 improves on state-of-the-art STMs in the following ways: (1) unlike all other STMs it fits seamlessly with any system's memory life-cycle, including those using malloc/free (2) unlike all other lock-based STMs it efficiently avoids periods of unsafe execution, that is, using its novel version-clock validation, user code is guaranteed to operate only on consistent memory states, and (3) in a sequence of high performance benchmarks, while providing these new properties, it delivered overall performance comparable to (and in many cases better than) that of all former STM algorithms, both lock-based and non-blocking. Perhaps more importantly, on various benchmarks, TL2 delivers performance that is competitive with the best hand-crafted fine-grained concurrent structures. Specifically, it is ten-fold faster than a single lock. We believe these characteristics make TL2 a viable candidate for deployment of transactional memory today, long before hardware transactional support is available.

891 citations