scispace - formally typeset
Search or ask a question
Author

Anu Suomalainen

Bio: Anu Suomalainen is an academic researcher from University of Helsinki. The author has contributed to research in topics: Mitochondrial DNA & Mitochondrial disease. The author has an hindex of 67, co-authored 206 publications receiving 17041 citations. Previous affiliations of Anu Suomalainen include Montreal Neurological Institute and Hospital & University of Eastern Finland.


Papers
More filters
Journal ArticleDOI
16 Mar 2012-Cell
TL;DR: This work provides a current view of how mitochondrial functions impinge on health and disease and identifies mitochondrial dysfunction as a key factor in a myriad of diseases, including neurodegenerative and metabolic disorders.

2,266 citations

Journal ArticleDOI
TL;DR: A novel mitochondrial protein, Twinkle, with structural similarity to phage T7 gene 4 primase/helicase and other hexameric ring helicases is reported, inferred to be critical for lifetime maintenance of human mtDNA integrity.
Abstract: The gene products involved in mammalian mitochondrial DNA (mtDNA) maintenance and organization remain largely unknown. We report here a novel mitochondrial protein, Twinkle, with structural similarity to phage T7 gene 4 primase/helicase and other hexameric ring helicases. Twinkle colocalizes with mtDNA in mitochondrial nucleoids. Screening of the gene encoding Twinkle in individuals with autosomal dominant progressive external ophthalmoplegia (adPEO), associated with multiple mtDNA deletions, identified 11 different coding-region mutations co-segregating with the disorder in 12 adPEO pedigrees of various ethnic origins. The mutations cluster in a region of the protein proposed to be involved in subunit interactions. The function of Twinkle is inferred to be critical for lifetime maintenance of human mtDNA integrity.

844 citations

Journal ArticleDOI
04 Aug 2000-Science
TL;DR: The identified two heterozygous missense mutations in the nuclear gene encoding the heart/skeletal muscle isoform of the adenine nucleotide translocator (ANT1) in five families and one sporadic patient indicate that ANT has a role in mtDNA maintenance and that a mitochondrial disease can be caused by a dominant mechanism.
Abstract: Autosomal dominant progressive external ophthalmoplegia is a rare human disease that shows a Mendelian inheritance pattern, but is characterized by large-scale mitochondrial DNA (mtDNA) deletions. We have identified two heterozygous missense mutations in the nuclear gene encoding the heart/skeletal muscle isoform of the adenine nucleotide translocator (ANT1) in five families and one sporadic patient. The familial mutation substitutes a proline for a highly conserved alanine at position 114 in the ANT1 protein. The analogous mutation in yeast caused a respiratory defect. These results indicate that ANT has a role in mtDNA maintenance and that a mitochondrial disease can be caused by a dominant mechanism.

600 citations

Journal ArticleDOI
TL;DR: Cosegregation of parkinsonism and POLG mutations in seven families suggests that when defective, this gene can underlie mendelian transmission of Parkinsonism.

529 citations

Journal ArticleDOI
01 Feb 2008-Brain
TL;DR: It is shown that a heterozygous mis-sense mutation in OPA1 leads to multiple mtDNA deletions in skeletal muscle and a mosaic defect of cytochrome c oxidase (COX), demonstrating the importance of OPA 1 in mtDNA maintenance, and implicates OPA2 in diseases associated with secondary defects of mtDNA.
Abstract: Mutations in nuclear genes involved in mitochondrial DNA (mtDNA) maintenance cause a wide range of clinical phenotypes associated with the secondary accumulation of multiple mtDNA deletions in affected tissues. The majority of families with autosomal dominant progressive external ophthalmoplegia (PEO) harbour mutations in genes encoding one of three well-characterized proteins--pol gamma, Twinkle or Ant 1. Here we show that a heterozygous mis-sense mutation in OPA1 leads to multiple mtDNA deletions in skeletal muscle and a mosaic defect of cytochrome c oxidase (COX). The disorder presented with visual failure and optic atrophy in childhood, followed by PEO, ataxia, deafness and a sensory-motor neuropathy in adult life. COX-deficient skeletal muscle fibres contained supra-threshold levels of multiple mtDNA deletions, and genetic linkage, sequencing and expression analysis excluded POLG1, PEO1 and SLC25A4, the gene encoding Ant 1, as the cause. This demonstrates the importance of OPA1 in mtDNA maintenance, and implicates OPA1 in diseases associated with secondary defects of mtDNA.

384 citations


Cited by
More filters
Journal ArticleDOI
06 Jun 2013-Cell
TL;DR: Nine tentative hallmarks that represent common denominators of aging in different organisms are enumerated, with special emphasis on mammalian aging, to identify pharmaceutical targets to improve human health during aging, with minimal side effects.

9,980 citations

Journal ArticleDOI
19 Oct 2006-Nature
TL;DR: Treatments targeting basic mitochondrial processes, such as energy metabolism or free-radical generation, or specific interactions of disease-related proteins with mitochondria hold great promise in ageing-related neurodegenerative diseases.
Abstract: Many lines of evidence suggest that mitochondria have a central role in ageing-related neurodegenerative diseases. Mitochondria are critical regulators of cell death, a key feature of neurodegeneration. Mutations in mitochondrial DNA and oxidative stress both contribute to ageing, which is the greatest risk factor for neurodegenerative diseases. In all major examples of these diseases there is strong evidence that mitochondrial dysfunction occurs early and acts causally in disease pathogenesis. Moreover, an impressive number of disease-specific proteins interact with mitochondria. Thus, therapies targeting basic mitochondrial processes, such as energy metabolism or free-radical generation, or specific interactions of disease-related proteins with mitochondria, hold great promise.

5,368 citations

01 Feb 2015
TL;DR: In this article, the authors describe the integrative analysis of 111 reference human epigenomes generated as part of the NIH Roadmap Epigenomics Consortium, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression.
Abstract: The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but epigenomic studies lack a similar reference. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection so far of human epigenomes for primary cells and tissues. Here we describe the integrative analysis of 111 reference human epigenomes generated as part of the programme, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic information for understanding gene regulation, cellular differentiation and human disease.

4,409 citations

Journal ArticleDOI
TL;DR: It is argued that redox biology, rather than oxidative stress, underlies physiological and pathological conditions.

4,297 citations

Journal ArticleDOI
TL;DR: A systematic review of studies reporting LEDs yielded a standardized LED for each drug, providing a useful tool to express dose intensity of different antiparkinsonian drug regimens on a single scale.
Abstract: Interpretation of clinical trials comparing different drug regimens for Parkinson's disease (PD) is complicated by the different dose intensities used: higher doses of levodopa and, possibly, other drugs produce better symptomatic control but more late complications. To address this problem, conversion factors have been calculated for antiparkinsonian drugs that yield a total daily levodopa equivalent dose (LED). LED estimates vary, so we undertook a systematic review of studies reporting LEDs to provide standardized formulae. Electronic database and hand searching of references identified 56 primary reports of LED estimates. Data were extracted and the mean and modal LEDs calculated. This yielded a standardized LED for each drug, providing a useful tool to express dose intensity of different antiparkinsonian drug regimens on a single scale. Using these conversion formulae to report LEDs would improve the consistency of reporting and assist the interpretation of clinical trials comparing different PD medications.

3,379 citations