scispace - formally typeset
Search or ask a question
Author

Anvar A. Zakhidov

Bio: Anvar A. Zakhidov is an academic researcher from University of Texas at Dallas. The author has contributed to research in topics: Perovskite (structure) & Carbon nanotube. The author has an hindex of 63, co-authored 417 publications receiving 27644 citations. Previous affiliations of Anvar A. Zakhidov include University of Texas System & Business International Corporation.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the properties of 10K class BEDT-TTF superconductors having polymerized anions and the superconductivity of the alkali doped C60 organic CT complexes are described.
Abstract: The curious structural and, physical properties of the 10K class BEDT-TTF superconductors having polymerized anions and the superconductivity of the alkali doped C60 organic CT complexes are described.

12 citations

Journal ArticleDOI
TL;DR: In this paper, the low-field signal (LFS) of microwave absorption and ESR spectra have been studied in multiphase BiSrCaCuO samples in which two superconducting phases with onset temperatures of 87 K and 112 K were found earlier by a.c. magnetometry measurements.

12 citations

Patent
23 Dec 2014
TL;DR: In this paper, the authors describe the properties and properties of carbon nanotube yarns, ribbons, and sheets, including extreme toughness, resistance to failure at knots, high electrical and thermal conductivities, high absorption of energy that occurs reversibly, up to 13% strain-to-failure compared with other fibers with similar toughness, retention of strength even when heated in air at 450° C. for one hour, and very high radiation and UV resistance, even when irradiated in air.
Abstract: The present invention is directed to nanofiber yarns, ribbons, and sheets; to methods of making said yarns, ribbons, and sheets; and to applications of said yarns, ribbons, and sheets. In some embodiments, the nanotube yarns, ribbons, and sheets comprise carbon nanotubes. Particularly, such carbon nanotube yarns of the present invention provide unique properties and property combinations such as extreme toughness, resistance to failure at knots, high electrical and thermal conductivities, high absorption of energy that occurs reversibly, up to 13% strain-to-failure compared with the few percent strain-to-failure of other fibers with similar toughness, very high resistance to creep, retention of strength even when heated in air at 450° C. for one hour, and very high radiation and UV resistance, even when irradiated in air. Furthermore these nanotube yarns can be spun as one micron diameter yarns and plied at will to make two-fold, four-fold, and higher fold yarns. Additional embodiments provide for the spinning of nanofiber sheets having arbitrarily large widths. In still additional embodiments, the present invention is directed to applications and devices that utilize and/or comprise the nanofiber yarns, ribbons, and sheets of the present invention.

11 citations

Patent
11 Nov 2005
TL;DR: In this paper, a method and apparatus for transferring an array of oriented carbon nanotubes from a first surface to a second surface by applying an electric potential between the first surface and the second surface was presented.
Abstract: The present invention provides a method and apparatus for transferring an array of oriented carbon nanotubes from a first surface to a second surface by providing the array of oriented carbon nanotubes on the first surface within a vacuum chamber, providing the second surface within the vacuum chamber separate from the first surface, and applying an electric potential between the first surface and the second surface such that the array of oriented carbon nanotubes are sublimed from the first surface and re-deposited on the second surface.

11 citations

Journal ArticleDOI
TL;DR: In this article, a phosphonate-functionalized poly-3-hexylthiophene (POP3HT-50) was used for direct synthesis of PbS NCs within the polymeric host matrix.
Abstract: Lead-based nanocrystals (NCs) are promising materials for high-efficiency solar cells since they are able to generate multiexcitons with high efficiency. One complication of utilizing these NCs is the insulating ligands capping their surfaces. In this paper, we have successfully developed and characterized a phosphonate-functionalized poly-3-hexylthiophene (POP3HT-50) and used it in the direct synthesis of PbS NCs within the polymeric host matrix without extraneous ligands. Devices made of POP3HT-50/PbS nanocomposites show an order of magnitude improvement in η when compared to that reported for a P3HT/PbS device (η = 0.011% versus 0.001%). The improved performance is consistent with better electronic contact between PbS NCs and POP3HT-50.

11 citations


Cited by
More filters
Journal ArticleDOI
22 Oct 2004-Science
TL;DR: Monocrystalline graphitic films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands and they exhibit a strong ambipolar electric field effect.
Abstract: We describe monocrystalline graphitic films, which are a few atoms thick but are nonetheless stable under ambient conditions, metallic, and of remarkably high quality. The films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands, and they exhibit a strong ambipolar electric field effect such that electrons and holes in concentrations up to 10 13 per square centimeter and with room-temperature mobilities of ∼10,000 square centimeters per volt-second can be induced by applying gate voltage.

55,532 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
02 Aug 2002-Science
TL;DR: Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects.
Abstract: Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects. Some of these applications are now realized in products. Others are demonstrated in early to advanced devices, and one, hydrogen storage, is clouded by controversy. Nanotube cost, polydispersity in nanotube type, and limitations in processing and assembly methods are important barriers for some applications of single-walled nanotubes.

9,693 citations