scispace - formally typeset
Search or ask a question
Author

Anxin Li

Bio: Anxin Li is an academic researcher from NTT DoCoMo. The author has contributed to research in topics: MIMO-OFDM & Scheduling (computing). The author has an hindex of 3, co-authored 5 publications receiving 54 citations.

Papers
More filters

Cited by
More filters
Journal ArticleDOI
TL;DR: This paper proposes a low-complexity sub-optimal user grouping scheme that exploits the channel gain differences among users in an NOMA cluster and groups them into a single cluster or multiple clusters in order to enhance the sum-throughput of the system.
Abstract: Non-orthogonal multiple access (NOMA) has recently been considered as a key enabling technique for 5G cellular systems. In NOMA, by exploiting the channel gain differences, multiple users are multiplexed into transmission power domain and then non-orthogonally scheduled for transmission on the same spectrum resources. Successive interference cancellation (SIC) is then applied at the receivers to decode the message signals. In this paper, first, we briefly describe the differences in the working principles of uplink and downlink NOMA transmissions in a cellular wireless system. Then, for both uplink and downlink NOMAs, we formulate a sum-throughput maximization problem in a cell such that the user clustering (i.e., grouping users into a single cluster or multiple clusters) and power allocations in NOMA clusters can be optimized under transmission power constraints, minimum rate requirements of the users, and SIC constraints. Due to the combinatorial nature of the formulated mixed integer non-linear programming problem, we solve the problem in two steps, i.e., by first grouping users into clusters and then optimizing their respective power allocations. In particular, we propose a low-complexity sub-optimal user grouping scheme. The proposed scheme exploits the channel gain differences among users in an NOMA cluster and groups them into a single cluster or multiple clusters in order to enhance the sum-throughput of the system. For a given set of NOMA clusters, we then derive the optimal power allocation policy that maximizes the sum-throughput per NOMA cluster and in turn maximizes the overall system throughput. Using Karush–Kuhn–Tucker optimality conditions, closed-form solutions for optimal power allocations are derived for any cluster size, considering both uplink and downlink NOMA systems. Numerical results compare the performances of NOMA and OMA and illustrate the significance of NOMA in various network scenarios.

542 citations

Posted Content
TL;DR: In this article, a low-complexity sub-optimal user grouping scheme was proposed to exploit the channel gain differences among users in a NOMA cluster and group them into a single cluster or multiple clusters in order to enhance the sum-throughput of the system.
Abstract: In this paper, first we briefly describe the differences in the working principles of uplink and downlink NOMA transmissions. Then, for both uplink and downlink NOMA, we formulate a sum-throughput maximization problem in a cell such that the user clustering (i.e., grouping users into a single cluster or multiple clusters) and power allocations in NOMA cluster(s) can be optimized under transmission power constraints, minimum rate requirements of the users, and SIC constraints. Due to the combinatorial nature of the formulated mixed integer non-linear programming (MINLP) problem, we solve the problem in two steps, i.e., by first grouping users into clusters and then optimizing their respective power allocations. In particular, we propose a low-complexity sub-optimal user grouping scheme. The proposed scheme exploits the channel gain differences among users in a NOMA cluster and group them into a single cluster or multiple clusters in order to enhance the sum-throughput of the system. For a given set of NOMA clusters, we then derive the optimal power allocation policy that maximizes the sum throughput per NOMA cluster and in turn maximizes the overall system throughput. Using KKT optimality conditions, closed-form solutions for optimal power allocations are derived for any cluster size, considering both uplink and downlink NOMA systems. Numerical results compare the performance of NOMA over orthogonal multiple access (OMA) and illustrate the significance of NOMA in various network scenarios.

467 citations

Journal ArticleDOI
TL;DR: In this paper, the power difference of multiple signals is exploited for multiple access and successive interference cancellation is employed at a receiver to mitigate co-channel interference, which can effectively increase the number of sub-channels without any bandwidth expansion.
Abstract: In nonorthogonal multiple access (NOMA), the power difference of multiple signals is exploited for multiple access and successive interference cancellation is employed at a receiver to mitigate co-channel interference. Thus, NOMA is usually employed for coordinated transmissions and mostly applied to downlink transmissions where a base station performs coordination for downlink transmissions with full channel state information. In this paper, however, we show that NOMA can also be employed for non-coordinated transmissions such as random access for uplink transmissions. We apply a NOMA scheme to multichannel ALOHA and show that the throughput can be improved. In particular, the resulting scheme is suitable for random access when the number of subchannels is limited since NOMA can effectively increase the number of subchannels without any bandwidth expansion.

214 citations

Journal ArticleDOI
TL;DR: This paper reveals that the NOMA techniques have evolved from single-carrier NomA (SC-NOMA) into multi- carrier NOMa (MC-N OMA), and comprehensively investigated on the basic principles, enabling schemes and evaluations of the two most promising MC-NomA techniques, namely sparse code multiple access (SCMA) and pattern division multiple access(PDMA).
Abstract: Non-orthogonal multiple access (NOMA) is one promising technology, which provides high system capacity, low latency, and massive connectivity, to address several challenges in the fifth-generation wireless systems. In this paper, we first reveal that the NOMA techniques have evolved from single-carrier NOMA (SC-NOMA) into multi-carrier NOMA (MC-NOMA). Then, we comprehensively investigated on the basic principles, enabling schemes and evaluations of the two most promising MC-NOMA techniques, namely sparse code multiple access (SCMA) and pattern division multiple access (PDMA). Meanwhile, we consider that the research challenges of SCMA and PDMA might be addressed with the stimulation of the advanced and matured progress in SC-NOMA. Finally, yet importantly, we investigate the emerging applications, and point out the future research trends of the MC-NOMA techniques, which could be straightforwardly inspired by the various deployments of SC-NOMA.

104 citations

Journal ArticleDOI
TL;DR: An overview of the views on the requirements, concept and promising technologies for 5G radio access, in addition to the ongoing activities for paving the way toward the realization of 5G by 2020 are introduced.
Abstract: Currently, many operators worldwide are deploying Long Term Evolution (LTE) to provide much faster access with lower latency and higher efficiency than its predecessors 3G and 3.5G. Meanwhile, the service rollout of LTE-Advanced, which is an evolution of LTE and a “true 4G” mobile broadband, is being underway to further enhance LTE performance. However, the anticipated challenges of the next decade (2020s) are so tremendous and diverse that there is a vastly increased need for a new generation mobile communications system with even further enhanced capabilities and new functionalities, namely a fifth generation (5G) system. Envisioning the development of a 5G system by 2020, at DOCOMO we started studies on future radio access as early as 2010, just after the launch of LTE service. The aim at that time was to anticipate the future user needs and the requirements of 10 years later (2020s) in order to identify the right concept and radio access technologies for the next generation system. The identified 5G concept consists of an efficient integration of existing spectrum bands for current cellular mobile and future new spectrum bands including higher frequency bands, e.g., millimeter wave, with a set of spectrum specific and spectrum agnostic technologies. Since a few years ago, we have been conducting several proof-of-concept activities and investigations on our 5G concept and its key technologies, including the development of a 5G real-time simulator, experimental trials of a wide range of frequency bands and technologies and channel measurements for higher frequency bands. In this paper, we introduce an overview of our views on the requirements, concept and promising technologies for 5G radio access, in addition to our ongoing activities for paving the way toward the realization of 5G by 2020. key words: next generation mobile communications system, 5G, 4G, LTE, LTE-advanced

102 citations