scispace - formally typeset
Search or ask a question
Author

Apostolos Georgiadis

Bio: Apostolos Georgiadis is an academic researcher from Heriot-Watt University. The author has contributed to research in topics: Antenna (radio) & Energy harvesting. The author has an hindex of 37, co-authored 224 publications receiving 6536 citations. Previous affiliations of Apostolos Georgiadis include University of Cantabria & University of Aveiro.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors provide an overview of the recent advances in the modelling, design and technological implementation of SIW structures and components, as well as their application in the development of circuits and components operating in the microwave and millimetre wave region.
Abstract: Substrate-integrated waveguide (SIW) technology represents an emerging and very promising candidate for the development of circuits and components operating in the microwave and millimetre-wave region. SIW structures are generally fabricated by using two rows of conducting cylinders or slots embedded in a dielectric substrate that connects two parallel metal plates, and permit the implementation of classical rectangular waveguide components in planar form, along with printed circuitry, active devices and antennas. This study aims to provide an overview of the recent advances in the modelling, design and technological implementation of SIW structures and components.

1,129 citations

Journal ArticleDOI
TL;DR: This paper presents an overview of WPT techniques with emphasis on working mechanisms, technical challenges, metamaterials, and classical applications, and discusses about future development trends.
Abstract: Due to limitations of low power density, high cost, heavy weight, etc., the development and application of battery-powered devices are facing with unprecedented technical challenges. As a novel pattern of energization, the wireless power transfer (WPT) offers a band new way to the energy acquisition for electric-driven devices, thus alleviating the over-dependence on the battery. This paper presents an overview of WPT techniques with emphasis on working mechanisms, technical challenges, metamaterials, and classical applications. Focusing on WPT systems, this paper elaborates on current major research topics and discusses about future development trends. This novel energy transmission mechanism shows significant meanings on the pervasive application of renewable energies in our daily life.

875 citations

Journal ArticleDOI
14 Oct 2014
TL;DR: In this article, various ambient energy harvesting technologies (solar, thermal, wireless, and piezoelectric) are reviewed in detail and their applicability in the development of self-sustaining wireless platforms is discussed.
Abstract: In this paper, various ambient energy-harvesting technologies (solar, thermal, wireless, and piezoelectric) are reviewed in detail and their applicability in the development of self-sustaining wireless platforms is discussed. Specifically, far-field low-power-density energy-harvesting technology is thoroughly investigated and a benchmarking prototype of an embedded microcontroller-enabled sensor platform has been successfully powered by an ambient ultrahigh-frequency (UHF) digital TV signal (512-566 MHz) where a broadcasting antenna is 6.3 km away from the proposed wireless energy-harvesting device. A high-efficiency dual-band ambient energy harvester at 915 MHz and 2.45 GHz and an energy harvester for on-body application at 460 MHz are also presented to verify the capabilities of ambient UHF/RF energy harvesting as an enabling technology for Internet of Things and smart skins applications.

527 citations

01 Jan 2014
TL;DR: A benchmarking prototype of an embedded microcontroller-enabled sensor platform has been successfully powered by an ambient ultrahigh-frequency (UHF) digital TV signal where a broadcasting antenna is 6.3 km away from the proposed wireless energy-harvesting device.
Abstract: In this paper, various ambient energy-harvesting technologies (solar, thermal, wireless, and piezoelectric) are reviewed in detail and their applicability in the development of self-sustaining wireless platforms is discussed. Specifically, far- field low-power-density energy-harvesting technology is thor- oughly investigated and a benchmarking prototype of an embedded microcontroller-enabled sensor platform has been successfully powered by an ambient ultrahigh-frequency (UHF) digital TV signal (512-566 MHz) where a broadcasting antenna is 6.3 km away from the proposed wireless energy-harvesting device. A high-efficiency dual-band ambient energy harvester at 915 MHz and 2.45 GHz and an energy harvester for on-body application at 460 MHz are also presented to verify the capa- bilities of ambient UHF/RF energy harvesting as an enabling technology for Internet of Things and smart skins applications.

470 citations

Journal ArticleDOI
TL;DR: The effects of gain, phase imbalance, and phase noise on EVM are examined on single-carrier, linear, and memoryless modulated signals, such as phase-shift keying and quadrature amplitude modulation (QAM).
Abstract: The error vector magnitude (EVM) is extensively applied as a measure of communication systems' performance. In this paper, the effects of gain, phase imbalance, and phase noise on EVM are examined. The work is focused on single-carrier, linear, and memoryless modulated signals, such as phase-shift keying and quadrature amplitude modulation (QAM). The EVM is calculated under the assumption that the transmitted signal consists of zero-mean uncorrelated inphase and quadrature components that are corrupted by additive white Gaussian noise. The contributions of this paper are as follows. First, an expression for the EVM is derived using a simple model that accounts for linear transmitter and receiver imperfections, inspired by the works of Cavers and Liao, 1993. Second, a union bound on the symbol error rate (SER) is derived. The root mean square EVM is shown to be independent of the constellation shape. The SER, however, is sensitive to the individual transmitted symbols and, therefore, the constellation shape. The resulting equations are used to examine the relation between EVM, sideband suppression, and phase noise.

241 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper presents an overview of the RF-EHNs including system architecture, RF energy harvesting techniques, and existing applications, and explores various key design issues according to the network types, i.e., single-hop networks, multiantenna networks, relay networks, and cognitive radio networks.
Abstract: Radio frequency (RF) energy transfer and harvesting techniques have recently become alternative methods to power the next-generation wireless networks As this emerging technology enables proactive energy replenishment of wireless devices, it is advantageous in supporting applications with quality-of-service requirements In this paper, we present a comprehensive literature review on the research progresses in wireless networks with RF energy harvesting capability, which is referred to as RF energy harvesting networks (RF-EHNs) First, we present an overview of the RF-EHNs including system architecture, RF energy harvesting techniques, and existing applications Then, we present the background in circuit design as well as the state-of-the-art circuitry implementations and review the communication protocols specially designed for RF-EHNs We also explore various key design issues in the development of RF-EHNs according to the network types, ie, single-hop networks, multiantenna networks, relay networks, and cognitive radio networks Finally, we envision some open research directions

2,352 citations

01 Sep 2010

2,148 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide an overview of the recent advances in the modelling, design and technological implementation of SIW structures and components, as well as their application in the development of circuits and components operating in the microwave and millimetre wave region.
Abstract: Substrate-integrated waveguide (SIW) technology represents an emerging and very promising candidate for the development of circuits and components operating in the microwave and millimetre-wave region. SIW structures are generally fabricated by using two rows of conducting cylinders or slots embedded in a dielectric substrate that connects two parallel metal plates, and permit the implementation of classical rectangular waveguide components in planar form, along with printed circuitry, active devices and antennas. This study aims to provide an overview of the recent advances in the modelling, design and technological implementation of SIW structures and components.

1,129 citations

Journal ArticleDOI
TL;DR: This work demonstrates a 32-Gbit’s−1 millimetre-wave link over 2.5 metres with a spectral efficiency of ~16 bit s− 1 Hz−1 using four independent orbital–angular momentum beams on each of two polarizations, and shows an 8-Gbits−1 link containing two orbital angular momentum beams with crosstalk less than −12.5 dB.
Abstract: One property of electromagnetic waves that has been recently explored is the ability to multiplex multiple beams, such that each beam has a unique helical phase front. The amount of phase front ‘twisting’ indicates the orbital angular momentum state number, and beams with different orbital angular momentum are orthogonal. Such orbital angular momentum based multiplexing can potentially increase the system capacity and spectral efficiency of millimetre-wave wireless communication links with a single aperture pair by transmitting multiple coaxial data streams. Here we demonstrate a 32-Gbit s−1 millimetre-wave link over 2.5 metres with a spectral efficiency of ~16 bit s−1 Hz−1 using four independent orbital–angular momentum beams on each of two polarizations. All eight orbital angular momentum channels are recovered with bit-error rates below 3.8 × 10−3. In addition, we demonstrate a millimetre-wave orbital angular momentum mode demultiplexer to demultiplex four orbital angular momentum channels with crosstalk less than −12.5 dB and show an 8-Gbit s−1 link containing two orbital angular momentum beams on each of two polarizations. High speed data transmission using orbital angular momentum beams has been recently demonstrated. Here, Yan et al. demonstrate a 32 Gbit/s millimetre-wave communication link using eight coaxially propagating independent orbital angular momentum beams with four orbital angular momentum states on two orthogonal polarizations.

1,002 citations

Journal ArticleDOI
TL;DR: The essential components required for vitals sensors are outlined and discussed here, including the reported sensor systems, sensing mechanisms, sensor fabrication, power, and data processing requirements.
Abstract: Advances in wireless technologies, low-power electronics, the internet of things, and in the domain of connected health are driving innovations in wearable medical devices at a tremendous pace. Wearable sensor systems composed of flexible and stretchable materials have the potential to better interface to the human skin, whereas silicon-based electronics are extremely efficient in sensor data processing and transmission. Therefore, flexible and stretchable sensors combined with low-power silicon-based electronics are a viable and efficient approach for medical monitoring. Flexible medical devices designed for monitoring human vital signs, such as body temperature, heart rate, respiration rate, blood pressure, pulse oxygenation, and blood glucose have applications in both fitness monitoring and medical diagnostics. As a review of the latest development in flexible and wearable human vitals sensors, the essential components required for vitals sensors are outlined and discussed here, including the reported sensor systems, sensing mechanisms, sensor fabrication, power, and data processing requirements.

959 citations