scispace - formally typeset
Search or ask a question
Author

Apurba Das

Other affiliations: Gauhati University
Bio: Apurba Das is an academic researcher from Indian Institute of Technology Guwahati. The author has contributed to research in topics: Materials science & Thin film. The author has an hindex of 8, co-authored 24 publications receiving 204 citations. Previous affiliations of Apurba Das include Gauhati University.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the effects of heavy ion induced modification on the structural, morphological and optical properties of potassium sodium niobate (KNN) thin films have been investigated using various techniques such as X-ray diffraction (XRD), atomic force microscopy (AFM), Raman spectroscopy, and UV-Vis spectroscope.
Abstract: In the present study, the effects of swift heavy ion induced modification on the structural, morphological and optical properties of potassium sodium niobate (KNN) thin films have been investigated. KNN thin films were deposited using RF magnetron sputtering onto Si and quartz substrates. Subsequently, as-deposited films were annealed at 700 °C in air ambience for crystallization. Eventually, these crystalline films were irradiated using 100 MeV Ag ions at various fluences ranging from 1 × 1012 to 1 × 1013 ions/cm2. The crystalline and irradiated films were characterized using various techniques such as X-ray diffraction (XRD), atomic force microscopy (AFM), Raman spectroscopy, and UV–Vis spectroscopy. XRD results reveal that the crystallinity of films decreases drastically upon irradiation and almost disappeared at 1 × 1013 ions/cm2. Raman spectra show the different vibration modes of NbO6 octahedra. Raman peaks intensity is decreased and the peaks get broadened due to irradiation which indicates the amorphous nature of films. Variation in surface morphology and roughness of films before and after irradiation is studied using AFM. The minimum value of roughness is observed at 5 × 1012 ions/cm2. Ion beam irradiation results in the variation of transmittance and optical band gap of the films. The optical band gap of crystalline KNN film is found to be 3.82 eV which decreased to 3.72 eV upon irradiation at 5 × 1012 ions/cm2. The monotonous decrease in the refractive index and packing density of films is also observed with ion fluence.

148 citations

Journal ArticleDOI
TL;DR: It is expected that the understanding the electrical properties would play a deciding role in developing HAp based biocompatible electronics, bio sensing and MEMS2..

64 citations

Journal ArticleDOI
TL;DR: Sputtering of BCP films improves wettability, mechanical properties as well as bioactivity of Ti-6Al-4V, which can be applied for orthopedic implants and in vitro bioactivity at a particular set of sputtering parameters are investigated.
Abstract: Biphasic calcium phosphate (BCP) consists of hydroxyapatite (HA) and beta-tricalcium phosphate (β-TCP). BCP is mainly used in artificial tooth and bone implants due to higher protein adsorption and osteoinductivity compared to HA alone. Although, many studies have been investigated on radio frequency (RF) magnetron sputtering of HA on Ti and its alloy, however, limited studies are available on BCP coating by this process and its bioactivity and adhesion behavior. Thus, in order to obtain a better understanding and applications of BCP films, RF magnetron sputtering is used to deposit BCP films on Ti-6Al-4V in the present study. The effect of film thickness on wettability, mechanical properties and in vitro bioactivity at a particular set of sputtering parameters are investigated. BCP film thickness of 400 nm, 700 nm and 1000 nm are obtained when sputtered for 4 h, 6 h and 8 h, respectively. Although the phase compositions are almost same for all films, the surface roughness values varies around 112–153 nm with rise in film thickness. This in turn enhances hydrophilicity in accordance to Wenzel relation as the contact angle decreases from 89.6 ± 2° to 61.2 ± 2°. It is found that the 1000 nm film possess highest micro-hardness and surface scratch resistance. No cracking of film up to scratch load of 2.3 N and no significant delamination up to load of 7.8 N are observed, indicating very good adhesion between BCP films and Ti-6Al-4V substrate. There is a great improvement in wt% apatite layer formation on all films when dipped in simulated body fluid (SBF) for 14 days. Among these, 1000 nm sputtered film results the highest increase in wt% apatite layer from 44.87% to 86.7%. The apatite layer possess small globular as well as elliptical structure are nucleated and grew on all the BCP films. Thus, sputtering of BCP films improves wettability, mechanical properties as well as bioactivity of Ti-6Al-4V, which can be applied for orthopedic implants.

42 citations

Journal ArticleDOI
TL;DR: In this paper, the structural, optical and dielectric properties of polycrystalline Hydroxyapatite [HAp, Ca10(PO4)6(OH)2] films, deposited using radio-frequency (RF) magnetron sputtering, were investigated.

30 citations

Journal ArticleDOI
TL;DR: In this paper, Li et al. used a Nd-YAG laser with a particular set of parameters and three different overlapping factors (OF): 0, 25% and 50%.

28 citations


Cited by
More filters
Journal ArticleDOI
05 Aug 2019-ACS Nano
TL;DR: The hierarchical porous HA/rGO composite scaffolds can greatly accelerate the bone ingrowth in the scaffold and bone repair in critical bone defects, thus providing a clinical potential candidate for large segment bone tissue engineering.
Abstract: Hydroxyapatite (HA), the traditional bone tissue replacement material was widely used in the clinical treatment of bone defects because of its excellent biocompatibility. However, the processing difficulty and poor osteoinductive ability greatly limit the application of HA. Although many strategies have been reported to improve the machinability and osteointegration ability, the performance including mechanical strength, porosity, cell adhesion, etc. of material still can not meet the requirements. In this work, a soft template method was developed and a porous scaffold with hierarchical pore structure, nano surface morphology, suitable porosity and pore size, and good biomechanical strength was successfully prepared. The hierarchical pore structure is beneficial for cell adhesion, fluid transfer, and cell ingrowth. Moreover, the loaded reduced graphene oxide (rGO) can improve the adhesion and promote the proliferation and spontaneous osteogenic differentiation bone marrow mesenchymal stem cells. The scaffold is then crushed, degraded and wrapped by the newly formed bone and the newly formed bone gradually replaces the scaffold. The degradation rate of the scaffold well matches the rate of the new bone formation. The hierarchical porous HA/rGO composite scaffolds can greatly accelerate the bone ingrowth in the scaffold and bone repair in critical bone defects, thus providing a clinical potential candidate for large segment bone tissue engineering.

148 citations

Journal ArticleDOI
TL;DR: In this paper, an ultrathin hydroxyapatite (HAp) nanosheets were noncovalently functionalized by situ self-polymerization of dopamine chemistry with an aim to improve their compatibility and dispersibility in epoxy matrix.

95 citations

Journal ArticleDOI
TL;DR: This article aims to provide a summary of the latest advances in surface modification techniques, of titanium and its alloys, specifically in biomedical applications, and the microstructure evolution is comprehensively discussed.
Abstract: Depending on the requirements of specific applications, implanted materials including metals, ceramics, and polymers have been used in various disciplines of medicine. Titanium and its alloys as implant materials play a critical role in the orthopedic and dental procedures. However, they still require the utilization of surface modification technologies to not only achieve the robust osteointegration but also to increase the antibacterial properties, which can avoid the implant-related infections. This article aims to provide a summary of the latest advances in surface modification techniques, of titanium and its alloys, specifically in biomedical applications. These surface techniques include plasma spray, physical vapor deposition, sol-gel, micro-arc oxidation, etc. Moreover, the microstructure evolution is comprehensively discussed, which is followed by enhanced mechanical properties, osseointegration, antibacterial properties, and clinical outcomes. Future researches should focus on the combination of multiple methods or improving the structure and composition of the composite coating to further enhance the coating performance.

91 citations

Journal ArticleDOI
TL;DR: In this paper, the radiation-shielding abilities of oxyfluoro-tellurite-zinc glasses in the chemical form of AlF3-TeO2-ZnO under the substitution by ZnO were examined.
Abstract: This paper examines radiation-shielding abilities of oxyfluoro-tellurite-zinc glasses in the chemical form of AlF3–TeO2–ZnO under the substitution of AlF3 by ZnO. Gamma-ray- and neutron-shielding properties were tested in terms of mass attenuation coefficient (μ/ρ), half value layer, mean free path, effective atomic numbers (Zeff), effective electron density (Neff) and removal cross-section (ΣR). The μ/ρ values of the glasses were generated by Geant4 simulations over an extended energy range and then the generated data were confirmed via XCOM software. The results showed that both gamma-ray- and neutron-shielding efficiencies of the selected glasses evolved by substituting of AlF3 by ZnO. Nuclear radiation-shielding abilities of the current glass systems were compared with that of some conventional shielding materials and newly developed HMO glasses. It can be concluded that oxyfluoro-tellurite-zinc glasses could be useful to design novel shields for radiation protection applications.

84 citations

Journal ArticleDOI
TL;DR: A significant reduction in patient healing time with less loss of mechanical strength of implants has been achieved after coating with hydroxyapatite (HA), and a comparative study of these techniques is presented.
Abstract: To facilitate patient healing in injuries and bone fractures, metallic implants have been in use for a long time. As metallic biomaterials have offered desirable mechanical strength higher than the stiffness of human bone, they have maintained their place. However, in many case studies, it has been observed that these metallic biomaterials undergo a series of corrosion reactions in human body fluid. The products of these reactions are released metallic ions, which are toxic in high dosages. On the other hand, as these metallic implants have different material structures and compositions than that of human bone, the process of healing takes a longer time and bone/implant interface forms slower. To resolve this issue, researchers have proposed depositing coatings, such as hydroxyapatite (HA), polycaprolactone (PCL), metallic oxides (e.g., TiO2, Al2O3), etc., on implant substrates in order to enhance bone/implant interaction while covering the substrate from corrosion. Due to many useful HA characteristics, the outcome of various studies has proved that after coating with HA, the implants enjoy enhanced corrosion resistance and less metallic ion release while the bone ingrowth has been increased. As a result, a significant reduction in patient healing time with less loss of mechanical strength of implants has been achieved. Some of the most reliable coating processes for biomaterials, to date, capable of depositing HA on implant substrate are known as sol-gel, high-velocity oxy-fuel-based deposition, plasma spraying, and electrochemical coatings. In this article, all these coating methods are categorized and investigated, and a comparative study of these techniques is presented.

82 citations