scispace - formally typeset
Search or ask a question
Author

Arash Ajoudani

Bio: Arash Ajoudani is an academic researcher from Istituto Italiano di Tecnologia. The author has contributed to research in topics: Computer science & Robot. The author has an hindex of 26, co-authored 127 publications receiving 2508 citations. Previous affiliations of Arash Ajoudani include University of Pisa & Iran University of Science and Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: The main purpose of this paper is to review the state-of-the-art on intermediate human–robot interfaces (bi-directional), robot control modalities, system stability, benchmarking and relevant use cases, and to extend views on the required future developments in the realm of human-robot collaboration.
Abstract: Recent technological advances in hardware design of the robotic platforms enabled the implementation of various control modalities for improved interactions with humans and unstructured environments. An important application area for the integration of robots with such advanced interaction capabilities is human---robot collaboration. This aspect represents high socio-economic impacts and maintains the sense of purpose of the involved people, as the robots do not completely replace the humans from the work process. The research community's recent surge of interest in this area has been devoted to the implementation of various methodologies to achieve intuitive and seamless human---robot-environment interactions by incorporating the collaborative partners' superior capabilities, e.g. human's cognitive and robot's physical power generation capacity. In fact, the main purpose of this paper is to review the state-of-the-art on intermediate human---robot interfaces (bi-directional), robot control modalities, system stability, benchmarking and relevant use cases, and to extend views on the required future developments in the realm of human---robot collaboration.

452 citations

Journal ArticleDOI
TL;DR: The proposed BMI exploits a novel algorithm to decouple the estimates of force and stiffness of the human arm while performing the task, and derives the reference command from a novel body–machine interface (BMI) applied to the master operator’s arm.
Abstract: This work presents the concept of tele-impedance as a method for remotely controlling a robotic arm in interaction with uncertain environments. As an alternative to bilateral force-reflecting teleoperation control, in tele-impedance a compound reference command is sent to the slave robot including both the desired motion trajectory and impedance profile, which are then realized by the remote controller without explicit feedback to the operator. We derive the reference command from a novel body-machine interface (BMI) applied to the master operator's arm, using only non-intrusive position and electromyography (EMG) measurements, and excluding any feedback from the remote site except for looking at the task. The proposed BMI exploits a novel algorithm to decouple the estimates of force and stiffness of the human arm while performing the task. The endpoint (wrist) position of the human arm is monitored by an optical tracking system and used for the closed-loop position control of the robot's end-effector. The concept is demonstrated in two experiments, namely a peg-in-the-hole and a ball-catching task, which illustrate complementary aspects of the method. The performance of tele-impedance control is assessed by comparing the results obtained with the slave arm under either constantly low or high stiffness.

220 citations

Journal ArticleDOI
TL;DR: The capability of the robot and the performance of the individual motion control and perception modules were validated during the DRC in which the robot was able to demonstrate exceptional physical resilience and execute some of the tasks during the competition.
Abstract: In this work, we present WALK-MAN, a humanoid platform that has been developed to operate in realistic unstructured environment, and demonstrate new skills including powerful manipulation, robust balanced locomotion, high-strength capabilities, and physical sturdiness. To enable these capabilities, WALK-MAN design and actuation are based on the most recent advancements of series elastic actuator drives with unique performance features that differentiate the robot from previous state-of-the-art compliant actuated robots. Physical interaction performance is benefited by both active and passive adaptation, thanks to WALK-MAN actuation that combines customized high-performance modules with tuned torque/velocity curves and transmission elasticity for high-speed adaptation response and motion reactions to disturbances. WALK-MAN design also includes innovative design optimization features that consider the selection of kinematic structure and the placement of the actuators with the body structure to maximize the robot performance. Physical robustness is ensured with the integration of elastic transmission, proprioceptive sensing, and control. The WALK-MAN hardware was designed and built in 11 months, and the prototype of the robot was ready four months before DARPA Robotics Challenge (DRC) Finals. The motion generation of WALK-MAN is based on the unified motion-generation framework of whole-body locomotion and manipulation (termed loco-manipulation). WALK-MAN is able to execute simple loco-manipulation behaviors synthesized by combining different primitives defining the behavior of the center of gravity, the motion of the hands, legs, and head, the body attitude and posture, and the constrained body parts such as joint limits and contacts. The motion-generation framework including the specific motion modules and software architecture is discussed in detail. A rich perception system allows the robot to perceive and generate 3D representations of the environment as well as detect contacts and sense physical interaction force and moments. The operator station that pilots use to control the robot provides a rich pilot interface with different control modes and a number of teleoperated or semiautonomous command features. The capability of the robot and the performance of the individual motion control and perception modules were validated during the DRC in which the robot was able to demonstrate exceptional physical resilience and execute some of the tasks during the competition.

211 citations

Journal ArticleDOI
TL;DR: The first international workshop on Present and future of non-invasive peripheral nervous system (PNS)–Machine Interfaces (MI) was convened, hosted by the International Conference on Rehabilitation Robotics, with an overview of the state of the art and future perspectives of such interfaces.
Abstract: One of the hottest topics in rehabilitation robotics is that of proper control of prosthetic devices. Despite decades of research, the state of the art is dramatically behind the expectations. To shed light on this issue, in June, 2013 the first international workshop on Present and future of non-invasive PNS-Machine Interfaces was convened, hosted by the International Conference on Rehabilitation Robotics. The keyword PNS-Machine Interface (PMI) has been selected to denote human-machine interfaces targeted at the limb-deficient, mainly upper-limb amputees, dealing with signals gathered from the peripheral nervous system (PNS) in a non-invasive way, that is, from the surface of the residuum. The workshop was intended to provide an overview of the state of the art and future perspectives of such interfaces; this paper represents is a collection of opinions expressed by each and every researcher/group involved in it.

193 citations

Journal ArticleDOI
TL;DR: In this paper, two upper limbs of an exoskeleton robot are operated within a constrained region of the operational space with unidentified intention of the human operator's motion as well as uncertain dynamics including physical limits.
Abstract: In this paper, two upper limbs of an exoskeleton robot are operated within a constrained region of the operational space with unidentified intention of the human operator's motion as well as uncertain dynamics including physical limits. The new human-cooperative strategies are developed to detect the human subject's movement efforts in order to make the robot behavior flexible and adaptive. The motion intention extracted from the measurement of the subject's muscular effort in terms of the applied forces/torques can be represented to derive the reference trajectory of his/her limb using a viable impedance model. Then, adaptive online estimation for impedance parameters is employed to deal with the nonlinear and variable stiffness property of the limb model. In order for the robot to follow a specific impedance target, we integrate the motion intention estimation into a barrier Lyapunov function based adaptive impedance control. Experiments have been carried out to verify the effectiveness of the proposed dual-arm coordination control scheme, in terms of desired motion and force tracking.

147 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: This work reviews the state-of-the-art techniques for controlling portable active lower limb prosthetic and orthotic P/O devices in the context of locomotive activities of daily living (ADL), and considers how these can be interfaced with the user’s sensory-motor control system.
Abstract: Technological advancements have led to the development of numerous wearable robotic devices for the physical assistance and restoration of human locomotion. While many challenges remain with respect to the mechanical design of such devices, it is at least equally challenging and important to develop strategies to control them in concert with the intentions of the user. This work reviews the state-of-the-art techniques for controlling portable active lower limb prosthetic and orthotic (P/O) devices in the context of locomotive activities of daily living (ADL), and considers how these can be interfaced with the user’s sensory-motor control system. This review underscores the practical challenges and opportunities associated with P/O control, which can be used to accelerate future developments in this field. Furthermore, this work provides a classification scheme for the comparison of the various control strategies. As a novel contribution, a general framework for the control of portable gait-assistance devices is proposed. This framework accounts for the physical and informatic interactions between the controller, the user, the environment, and the mechanical device itself. Such a treatment of P/Os – not as independent devices, but as actors within an ecosystem – is suggested to be necessary to structure the next generation of intelligent and multifunctional controllers. Each element of the proposed framework is discussed with respect to the role that it plays in the assistance of locomotion, along with how its states can be sensed as inputs to the controller. The reviewed controllers are shown to fit within different levels of a hierarchical scheme, which loosely resembles the structure and functionality of the nominal human central nervous system (CNS). Active and passive safety mechanisms are considered to be central aspects underlying all of P/O design and control, and are shown to be critical for regulatory approval of such devices for real-world use. The works discussed herein provide evidence that, while we are getting ever closer, significant challenges still exist for the development of controllers for portable powered P/O devices that can seamlessly integrate with the user’s neuromusculoskeletal system and are practical for use in locomotive ADL.

853 citations

Journal ArticleDOI
TL;DR: In this paper, the authors focus on a particular type of intrinsically soft, elastomeric robot powered via fluidic pressurization, and present a review of their use in soft robotics.
Abstract: The emerging field of soft robotics makes use of many classes of materials including metals, low glass transition temperature (Tg) plastics, and high Tg elastomers. Dependent on the specific design, all of these materials may result in extrinsically soft robots. Organic elastomers, however, have elastic moduli ranging from tens of megapascals down to kilopascals; robots composed of such materials are intrinsically soft − they are always compliant independent of their shape. This class of soft machines has been used to reduce control complexity and manufacturing cost of robots, while enabling sophisticated and novel functionalities often in direct contact with humans. This review focuses on a particular type of intrinsically soft, elastomeric robot − those powered via fluidic pressurization.

653 citations

Journal ArticleDOI
TL;DR: A systematic overview of the assistive strategies utilized by active locomotion-augmentation orthoses and exoskeletons is provided, based on the literature collected from Web of Science and Scopus.

570 citations

Journal ArticleDOI
TL;DR: A literature review on needs analysis of upper limb prosthesis users is presented, and the main critical aspects of the current prosthetic solutions are pointed out, in terms of users satisfaction and activities of daily living they would like to perform with the prosthetic device.
Abstract: The loss of one hand can significantly affect the level of autonomy and the capability of performing daily living, working and social activities. The current prosthetic solutions contribute in a poor way to overcome these problems due to the limitations of the interfaces adopted for controlling the prosthesis and to the absence of force or tactile feedback which limit the hand grasp capabilities. In order to provide indications for further developments in the prosthetic field to increase user satisfaction rates and therefore to reduce device abandonment, this paper reports a literature review on needs analysis of upper limb prosthesis users, by pointing out the critical aspects of the prosthetic solutions in terms of users satisfaction and activities of daily living they would like to perform with the prosthetic device. A list of requirements for upper limb prostheses is proposed, grounded on the performed analysis on user needs. The defined list of requirements for the prosthetic system aims to provide (i) some guidelines for improving the level of acceptability and usefulness of the prosthesis, by accounting for hand functional and technical aspects; (ii) a possible functional scheme of a PNS-based prosthetic system able to satisfy the emerged user wishes; (iii) some hints for improving the quality of the methods (such as questionnaires) adopted for understanding the user satisfaction with their prosthesis.

461 citations