scispace - formally typeset
Search or ask a question
Author

Arash Asadi

Bio: Arash Asadi is an academic researcher from Technische Universität Darmstadt. The author has contributed to research in topics: Cellular network & Scheduling (computing). The author has an hindex of 16, co-authored 43 publications receiving 4096 citations. Previous affiliations of Arash Asadi include IMDEA & Carlos III Health Institute.

Papers
More filters
Journal ArticleDOI
TL;DR: This paper provides a taxonomy based on the D2D communicating spectrum and review the available literature extensively under the proposed taxonomy to provide new insights into the over-explored and under- Explored areas that lead to identify open research problems of D1D communications in cellular networks.
Abstract: Device-to-device (D2D) communications was initially proposed in cellular networks as a new paradigm for enhancing network performance. The emergence of new applications such as content distribution and location-aware advertisement introduced new user cases for D2D communications in cellular networks. The initial studies showed that D2D communications has advantages such as increased spectral efficiency and reduced communication delay. However, this communication mode introduces complications in terms of interference control overhead and protocols that are still open research problems. The feasibility of D2D communications in Long-Term Evolution Advanced is being studied by academia, industry, and standardization bodies. To date, there are more than 100 papers available on D2D communications in cellular networks, but there is no survey on this field. In this paper, we provide a taxonomy based on the D2D communicating spectrum and review the available literature extensively under the proposed taxonomy. Moreover, we provide new insights into the over-explored and under-explored areas that lead us to identify open research problems of D2D communications in cellular networks.

1,784 citations

Journal ArticleDOI
TL;DR: In this article, a taxonomy based on the D2D communicating spectrum and review the available literature extensively under the proposed taxonomy is provided, which provides new insights to the over-explored and underexplored areas which lead to identify open research problems of D2DM communication in cellular networks.
Abstract: Device-to-Device (D2D) communication was initially proposed in cellular networks as a new paradigm to enhance network performance. The emergence of new applications such as content distribution and location-aware advertisement introduced new use-cases for D2D communications in cellular networks. The initial studies showed that D2D communication has advantages such as increased spectral efficiency and reduced communication delay. However, this communication mode introduces complications in terms of interference control overhead and protocols that are still open research problems. The feasibility of D2D communications in LTE-A is being studied by academia, industry, and the standardization bodies. To date, there are more than 100 papers available on D2D communications in cellular networks and, there is no survey on this field. In this article, we provide a taxonomy based on the D2D communicating spectrum and review the available literature extensively under the proposed taxonomy. Moreover, we provide new insights to the over-explored and under-explored areas which lead us to identify open research problems of D2D communication in cellular networks.

1,590 citations

Journal ArticleDOI
TL;DR: A taxonomy for opportunistic schedulers is provided, which is based on scheduling design's objectives, to unveil two major issues: (i) the research in opportunistic is mature enough to jump from pure theory to implementation, and (ii) there are still under-explored and interesting research areas in opportunism scheduling.
Abstract: Wireless technology advancements made opportunistic scheduling a popular topic in recent times. However, opportunistic schedulers for wireless systems have been studied since nearly twenty years, but not implemented in real systems due to their high complexity and hardly achievable requirements. In contrast, today's popularity of opportunistic schedulers extends to implementation proposals for next generation cellular technologies. Motivated by such a novel interest towards opportunistic scheduling, we provide a taxonomy for opportunistic schedulers, which is based on scheduling design's objectives; accordingly, we provide an extensive review of opportunistic scheduling proposals which have appeared in the literature during nearly two decades. The huge number of papers available in the literature propose different techniques to perform opportunistic scheduling, ranging from simple heuristic algorithms to complex mathematical models. Some proposals are only designed to increase the total network capacity, while others enhance QoS objectives such as throughput and fairness. Interestingly, our survey helps to unveil two major issues: (i) the research in opportunistic is mature enough to jump from pure theory to implementation, and (ii) there are still under-explored and interesting research areas in opportunistic scheduling, e.g., opportunistic offloading of cellular traffic to 802.11-like networks, or cooperative/distributed opportunistic scheduling.

177 citations

Proceedings ArticleDOI
13 Nov 2013
TL;DR: A protocol that focuses on D2D communications using LTE and WiFi Direct technologies is introduced and it is shown that currently available WiFi Direct features permits to deploy the D1D paradigm on top of the LTE cellular infrastructure, without requiring any fundamental change in LTE protocols.
Abstract: With the evolution of high-performance multi-radio smartphones, Device-to-Device (D2D) communications became an attractive solution for enhancing the performance of cellular networks. Although D2D communications have been widely studied within past few years, the majority of the literature is confined to new theoretical proposals and did not consider implementation challenges. In fact, the implementation feasibility of D2D communications and its challenges are still a relevant research question. In this paper, we introduce a protocol that focuses on D2D communications using LTE and WiFi Direct technologies. We also show that currently available WiFi Direct features permits to deploy the D2D paradigm on top of the LTE cellular infrastructure, without requiring any fundamental change in LTE protocols.

132 citations

Journal ArticleDOI
TL;DR: This work proposes an online learning algorithm addressing the problem of beam selection with environment-awareness in mmWave vehicular systems as a contextual multi-armed bandit problem and proposes a lightweight context-aware onlinelearning algorithm, namely fast machine learning (FML), with proven performance bound and guaranteed convergence.
Abstract: Millimeter-Wave (mmWave) bands have become the de-facto candidate for 5G vehicle-to-everything (V2X) since future vehicular systems demand Gbps links to acquire the necessary sensory information for (semi)-autonomous driving. Nevertheless, the directionality of mmWave communications and its susceptibility to blockage raise severe questions on the feasibility of mmWave vehicular communications. The dynamic nature of 5G vehicular scenarios and the complexity of directional mmWave communication calls for higher context-awareness and adaptability. To this aim, we propose an online learning algorithm addressing the problem of beam selection with environment-awareness in mmWave vehicular systems. In particular, we model this problem as a contextual multi-armed bandit problem. Next, we propose a lightweight context-aware online learning algorithm, namely fast machine learning (FML), with proven performance bound and guaranteed convergence. FML exploits coarse user location information and aggregates the received data to learn from and adapt to its environment. Furthermore, we demonstrate the feasibility of a real-world implementation of FML by proposing a standard-compliant protocol based on the existing architecture of cellular networks and the forthcoming features of 5G. We also perform an extensive evaluation using realistic traffic patterns derived from Google Maps. Our evaluation shows that FML enables mmWave base stations to achieve near-optimal performance on average within 33 mins of deployment by learning from the available context. Moreover, FML remains within ~ 5% of the optimal performance by swift adaptation to system changes (i.e., blockage, traffic).

125 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An overview of UAV-aided wireless communications is provided, by introducing the basic networking architecture and main channel characteristics, highlighting the key design considerations as well as the new opportunities to be exploited.
Abstract: Wireless communication systems that include unmanned aerial vehicles promise to provide cost-effective wireless connectivity for devices without infrastructure coverage. Compared to terrestrial communications or those based on high-altitude platforms, on-demand wireless systems with low-altitude UAVs are in general faster to deploy, more flexibly reconfigured, and likely to have better communication channels due to the presence of short-range line-of-sight links. However, the utilization of highly mobile and energy-constrained UAVs for wireless communications also introduces many new challenges. In this article, we provide an overview of UAV-aided wireless communications, by introducing the basic networking architecture and main channel characteristics, highlighting the key design considerations as well as the new opportunities to be exploited.

3,145 citations

Journal ArticleDOI
TL;DR: This survey makes an exhaustive review of wireless evolution toward 5G networks, including the new architectural changes associated with the radio access network (RAN) design, including air interfaces, smart antennas, cloud and heterogeneous RAN, and underlying novel mm-wave physical layer technologies.
Abstract: The vision of next generation 5G wireless communications lies in providing very high data rates (typically of Gbps order), extremely low latency, manifold increase in base station capacity, and significant improvement in users’ perceived quality of service (QoS), compared to current 4G LTE networks. Ever increasing proliferation of smart devices, introduction of new emerging multimedia applications, together with an exponential rise in wireless data (multimedia) demand and usage is already creating a significant burden on existing cellular networks. 5G wireless systems, with improved data rates, capacity, latency, and QoS are expected to be the panacea of most of the current cellular networks’ problems. In this survey, we make an exhaustive review of wireless evolution toward 5G networks. We first discuss the new architectural changes associated with the radio access network (RAN) design, including air interfaces, smart antennas, cloud and heterogeneous RAN. Subsequently, we make an in-depth survey of underlying novel mm-wave physical layer technologies, encompassing new channel model estimation, directional antenna design, beamforming algorithms, and massive MIMO technologies. Next, the details of MAC layer protocols and multiplexing schemes needed to efficiently support this new physical layer are discussed. We also look into the killer applications, considered as the major driving force behind 5G. In order to understand the improved user experience, we provide highlights of new QoS, QoE, and SON features associated with the 5G evolution. For alleviating the increased network energy consumption and operating expenditure, we make a detail review on energy awareness and cost efficiency. As understanding the current status of 5G implementation is important for its eventual commercialization, we also discuss relevant field trials, drive tests, and simulation experiments. Finally, we point out major existing research issues and identify possible future research directions.

2,624 citations

Journal ArticleDOI
TL;DR: This paper provides a taxonomy based on the D2D communicating spectrum and review the available literature extensively under the proposed taxonomy to provide new insights into the over-explored and under- Explored areas that lead to identify open research problems of D1D communications in cellular networks.
Abstract: Device-to-device (D2D) communications was initially proposed in cellular networks as a new paradigm for enhancing network performance. The emergence of new applications such as content distribution and location-aware advertisement introduced new user cases for D2D communications in cellular networks. The initial studies showed that D2D communications has advantages such as increased spectral efficiency and reduced communication delay. However, this communication mode introduces complications in terms of interference control overhead and protocols that are still open research problems. The feasibility of D2D communications in Long-Term Evolution Advanced is being studied by academia, industry, and standardization bodies. To date, there are more than 100 papers available on D2D communications in cellular networks, but there is no survey on this field. In this paper, we provide a taxonomy based on the D2D communicating spectrum and review the available literature extensively under the proposed taxonomy. Moreover, we provide new insights into the over-explored and under-explored areas that lead us to identify open research problems of D2D communications in cellular networks.

1,784 citations

Journal ArticleDOI
TL;DR: In this article, a taxonomy based on the D2D communicating spectrum and review the available literature extensively under the proposed taxonomy is provided, which provides new insights to the over-explored and underexplored areas which lead to identify open research problems of D2DM communication in cellular networks.
Abstract: Device-to-Device (D2D) communication was initially proposed in cellular networks as a new paradigm to enhance network performance. The emergence of new applications such as content distribution and location-aware advertisement introduced new use-cases for D2D communications in cellular networks. The initial studies showed that D2D communication has advantages such as increased spectral efficiency and reduced communication delay. However, this communication mode introduces complications in terms of interference control overhead and protocols that are still open research problems. The feasibility of D2D communications in LTE-A is being studied by academia, industry, and the standardization bodies. To date, there are more than 100 papers available on D2D communications in cellular networks and, there is no survey on this field. In this article, we provide a taxonomy based on the D2D communicating spectrum and review the available literature extensively under the proposed taxonomy. Moreover, we provide new insights to the over-explored and under-explored areas which lead us to identify open research problems of D2D communication in cellular networks.

1,590 citations

Book
26 Aug 2021
TL;DR: The use of unmanned aerial vehicles (UAVs) is growing rapidly across many civil application domains, including real-time monitoring, providing wireless coverage, remote sensing, search and rescue, delivery of goods, security and surveillance, precision agriculture, and civil infrastructure inspection.
Abstract: The use of unmanned aerial vehicles (UAVs) is growing rapidly across many civil application domains, including real-time monitoring, providing wireless coverage, remote sensing, search and rescue, delivery of goods, security and surveillance, precision agriculture, and civil infrastructure inspection. Smart UAVs are the next big revolution in the UAV technology promising to provide new opportunities in different applications, especially in civil infrastructure in terms of reduced risks and lower cost. Civil infrastructure is expected to dominate more than $45 Billion market value of UAV usage. In this paper, we present UAV civil applications and their challenges. We also discuss the current research trends and provide future insights for potential UAV uses. Furthermore, we present the key challenges for UAV civil applications, including charging challenges, collision avoidance and swarming challenges, and networking and security-related challenges. Based on our review of the recent literature, we discuss open research challenges and draw high-level insights on how these challenges might be approached.

901 citations