scispace - formally typeset
Search or ask a question
Author

Arash Sahraie

Bio: Arash Sahraie is an academic researcher from University of Aberdeen. The author has contributed to research in topics: Blindsight & Visual perception. The author has an hindex of 28, co-authored 85 publications receiving 4551 citations. Previous affiliations of Arash Sahraie include City University London & King's College, Aberdeen.


Papers
More filters
Journal ArticleDOI
TL;DR: NEC can be used as an effective rehabilitation tool to develop compensatory strategies in patients with visual field deficits after brain injury and improvements in patients were significantly greater than those in a group of healthy adults.
Abstract: Visual field deficits are common in patients with damaged retinogeniculostriate pathways. The patient's eye movements are often affected leading to inefficient visual search. Systematic eye movement training also called compensatory therapy is needed to allow patients to develop effective coping strategies. There is a lack of evidence-based, clinical gold-standard registered medical device accessible to patients at home or in clinical settings and NeuroEyeCoach (NEC) is developed to address this need. In three experiments, we report on performance of patients on NEC compared to the data obtained previously on the earlier versions of the search task (n = 32); we assessed whether the self-administered computerised tasks can be used to monitor the progress (n = 24) and compared the findings in a subgroup of patients to a healthy control group. Performance on cancellation tasks, simple visual search, and self-reported responses on activities of daily living was compared, before and after training. Patients performed similarly well on NEC as on previous versions of the therapy; the inbuilt functionality for pre- and postevaluation functions was sensitive to allowing assessment of improvements; and improvements in patients were significantly greater than those in a group of healthy adults. In conclusion, NeuroEyeCoach can be used as an effective rehabilitation tool to develop compensatory strategies in patients with visual field deficits after brain injury.

1,784 citations

Journal ArticleDOI
TL;DR: It is suggested that it should be possible to image brain activity and to identify the active areas involved in the same subject performing the same discrimination task, both with and without conscious awareness, and hence to determine whether any structures contribute uniquely to conscious perception.
Abstract: When the visual (striate) cortex (V1) is damaged in human subjects, cortical blindness results in the contralateral visual half field. Nevertheless, under some experimental conditions, subjects demonstrate a capacity to make visual discriminations in the blind hemifield (blindsight), even though they have no phenomenal experience of seeing. This capacity must, therefore, be mediated by parallel projections to other brain areas. It is also the case that some subjects have conscious residual vision in response to fast moving stimuli or sudden changes in light flux level presented to the blind hemifield, characterized by a contentless kind of awareness, a feeling of something happening, albeit not normal seeing. The relationship between these two modes of discrimination has never been studied systematically. We examine, in the same experiment, both the unconscious discrimination and the conscious visual awareness of moving stimuli in a subject with unilateral damage to V1. The results demonstrate an excellent capacity to discriminate motion direction and orientation in the absence of acknowledged perceptual awareness. Discrimination of the stimulus parameters for acknowledged awareness apparently follows a different functional relationship with respect to stimulus speed, displacement, and stimulus contrast. As performance in the two modes can be quantitatively matched, the findings suggest that it should be possible to image brain activity and to identify the active areas involved in the same subject performing the same discrimination task, both with and without conscious awareness, and hence to determine whether any structures contribute uniquely to conscious perception.

258 citations

Journal ArticleDOI
TL;DR: A functional magnetic resonance imaging study on a subject with unilateral damage to the primary visual cortex carried out under aware and unaware stimulus conditions points to a shift in the pattern of activity from neocortex in the aware mode, to subcortical structures in the unaware mode.
Abstract: Following striate cortex damage in monkeys and humans there can be residual function mediated by parallel visual pathways. In humans this can sometimes be associated with a “feeling” that something has happened, especially with rapid movement or abrupt onset. For less transient events, discriminative performance may still be well above chance even when the subject reports no conscious awareness of the stimulus. In a previous study we examined parameters that yield good residual visual performance in the “blind” hemifield of a subject with unilateral damage to the primary visual cortex. With appropriate parameters we demonstrated good discriminative performance, both with and without conscious awareness of a visual event. These observations raise the possibility of imaging the brain activity generated in the “aware” and the “unaware” modes, with matched levels of discrimination performance, and hence of revealing patterns of brain activation associated with visual awareness. The intact hemifield also allows a comparison with normal vision. Here we report the results of a functional magnetic resonance imaging study on the same subject carried out under aware and unaware stimulus conditions. The results point to a shift in the pattern of activity from neocortex in the aware mode, to subcortical structures in the unaware mode. In the aware mode prestriate and dorsolateral prefrontal cortices (area 46) are active. In the unaware mode the superior colliculus is active, together with medial and orbital prefrontal cortical sites.

247 citations

Journal ArticleDOI
TL;DR: This study provides the most detailed set of normative data to date for chromatic discrimination on the Farnsworth-Munsell 100 hue test, showing that the performance in this task varies as a U-shape function with age, the best being achieved at 19 years of age.
Abstract: Aims: To provide normative data for chromatic discrimination on the Farnsworth-Munsell 100 hue test particularly for observers under 23 years of age. Methods: Normal observers were screened for congenital colour vision deficiencies using the Ishihara test leaving 382 observers. Results: New total error score (TES) norms (means and 95th percentiles) are presented for each year of age from 5–22 and for 10 year age groups from the 30s to the 70s. These norms are presented as actual values (TES) and also as square root values (√TES). Other data include partial error scores for red-green and blue-yellow axes discrimination. Conclusion: This study provides the most detailed set of normative data to date. The data are also in agreement with other reports of chromatic discrimination, showing that the performance in this task varies as a U-shape function with age, the best being achieved at 19 years of age.

192 citations

Journal ArticleDOI
TL;DR: The results show that repeated stimulation by appropriate visual stimuli can result in improvements in visual sensitivities in the very depths of the field defect.
Abstract: Lesions of the occipital cortex result in areas of cortical blindness affecting the corresponding regions of the patient's visual field. The traditional view is that, aside from some spontaneous recovery in the first few months after the damage, when acute effects have subsided the areas of blindness are absolute and permanent. It has been found, however, that within such field defects some residual visual capacities may persist in the absence of acknowledged awareness by the subject (blindsight type 1) or impaired awareness (type 2). Neuronal pathways mediating blindsight have a specific and narrow spatial and temporal bandwidth. A group of cortically blind patients (n = 12) carried out a daily detection "training" task over a 3-month period, discriminating grating visual stimuli optimally configured for blindsight from homogeneous luminance-matched stimuli. No feedback was given during the training. Assessment of training was by psychophysical measurements carried out before and after training and included detection of a range of spatial frequencies (0.5-7 cycles per degree), contrast detection at 1 cycle per degree, clinical perimetry, and subjective estimates of visual field defect. The results show that repeated stimulation by appropriate visual stimuli can result in improvements in visual sensitivities in the very depths of the field defect.

151 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This introductory chapter attempts to clarify the philosophical, empirical, and theoretical bases on which a cognitive neuroscience approach to consciousness can be founded and proposes a theoretical framework that synthesizes those facts: the hypothesis of a global neuronal workspace.

1,940 citations

Journal ArticleDOI
TL;DR: NEC can be used as an effective rehabilitation tool to develop compensatory strategies in patients with visual field deficits after brain injury and improvements in patients were significantly greater than those in a group of healthy adults.
Abstract: Visual field deficits are common in patients with damaged retinogeniculostriate pathways. The patient's eye movements are often affected leading to inefficient visual search. Systematic eye movement training also called compensatory therapy is needed to allow patients to develop effective coping strategies. There is a lack of evidence-based, clinical gold-standard registered medical device accessible to patients at home or in clinical settings and NeuroEyeCoach (NEC) is developed to address this need. In three experiments, we report on performance of patients on NEC compared to the data obtained previously on the earlier versions of the search task (n = 32); we assessed whether the self-administered computerised tasks can be used to monitor the progress (n = 24) and compared the findings in a subgroup of patients to a healthy control group. Performance on cancellation tasks, simple visual search, and self-reported responses on activities of daily living was compared, before and after training. Patients performed similarly well on NEC as on previous versions of the therapy; the inbuilt functionality for pre- and postevaluation functions was sensitive to allowing assessment of improvements; and improvements in patients were significantly greater than those in a group of healthy adults. In conclusion, NeuroEyeCoach can be used as an effective rehabilitation tool to develop compensatory strategies in patients with visual field deficits after brain injury.

1,784 citations

Journal ArticleDOI
TL;DR: It is found that deep learning has yet to revolutionize biomedicine or definitively resolve any of the most pressing challenges in the field, but promising advances have been made on the prior state of the art.
Abstract: Deep learning describes a class of machine learning algorithms that are capable of combining raw inputs into layers of intermediate features. These algorithms have recently shown impressive results across a variety of domains. Biology and medicine are data-rich disciplines, but the data are complex and often ill-understood. Hence, deep learning techniques may be particularly well suited to solve problems of these fields. We examine applications of deep learning to a variety of biomedical problems-patient classification, fundamental biological processes and treatment of patients-and discuss whether deep learning will be able to transform these tasks or if the biomedical sphere poses unique challenges. Following from an extensive literature review, we find that deep learning has yet to revolutionize biomedicine or definitively resolve any of the most pressing challenges in the field, but promising advances have been made on the prior state of the art. Even though improvements over previous baselines have been modest in general, the recent progress indicates that deep learning methods will provide valuable means for speeding up or aiding human investigation. Though progress has been made linking a specific neural network's prediction to input features, understanding how users should interpret these models to make testable hypotheses about the system under study remains an open challenge. Furthermore, the limited amount of labelled data for training presents problems in some domains, as do legal and privacy constraints on work with sensitive health records. Nonetheless, we foresee deep learning enabling changes at both bench and bedside with the potential to transform several areas of biology and medicine.

1,491 citations

Journal ArticleDOI
TL;DR: In this article, the authors used measures of right amygdala neural activity acquired from volunteer subjects viewing masked fear-conditioned faces to determine whether a colliculo-pulvinar pathway was engaged during processing of these unseen target stimuli.
Abstract: Neuroimaging studies have shown differential amygdala responses to masked (“unseen”) emotional stimuli. How visual signals related to such unseen stimuli access the amygdala is unknown. A possible pathway, involving the superior colliculus and pulvinar, is suggested by observations of patients with striate cortex lesions who show preserved abilities to localize and discriminate visual stimuli that are not consciously perceived (“blindsight”). We used measures of right amygdala neural activity acquired from volunteer subjects viewing masked fear-conditioned faces to determine whether a colliculo-pulvinar pathway was engaged during processing of these unseen target stimuli. Increased connectivity between right amygdala, pulvinar, and superior colliculus was evident when fear-conditioned faces were unseen rather than seen. Right amygdala connectivity with fusiform and orbitofrontal cortices decreased in the same condition. By contrast, the left amygdala, whose activity did not discriminate seen and unseen fear-conditioned targets, showed no masking-dependent changes in connectivity with superior colliculus or pulvinar. These results suggest that a subcortical pathway to the right amygdala, via midbrain and thalamus, provides a route for processing behaviorally relevant unseen visual events in parallel to a cortical route necessary for conscious identification.

1,267 citations

Journal ArticleDOI
TL;DR: An activation of pulvinar and superior colliculus by fearful expressions occurred specifically with low-frequency faces, suggesting that these subcortical pathways may provide coarse fear-related inputs to the amygdala.
Abstract: High and low spatial frequency information in visual images is processed by distinct neural channels. Using event-related functional magnetic resonance imaging (fMRI) in humans, we show dissociable roles of such visual channels for processing faces and emotional fearful expressions. Neural responses in fusiform cortex, and effects of repeating the same face identity upon fusiform activity, were greater with intact or high-spatial-frequency face stimuli than with low-frequency faces, regardless of emotional expression. In contrast, amygdala responses to fearful expressions were greater for intact or low-frequency faces than for high-frequency faces. An activation of pulvinar and superior colliculus by fearful expressions occurred specifically with low-frequency faces, suggesting that these subcortical pathways may provide coarse fear-related inputs to the amygdala.

1,062 citations