scispace - formally typeset
Search or ask a question
Author

Aravind Vaidyanathan

Bio: Aravind Vaidyanathan is an academic researcher from Indian Institute of Space Science and Technology. The author has contributed to research in topics: Jet (fluid) & Injector. The author has an hindex of 14, co-authored 36 publications receiving 484 citations. Previous affiliations of Aravind Vaidyanathan include Iowa State University & University of Florida.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors investigated kerosene-alumina nanofluid for its stability, thermal conductivity and viscosity at low volume concentration of nanoparticles.

87 citations

Journal ArticleDOI
TL;DR: In this article, the authors explore the potential use of kerosene-Al2O3 nanofluid for thrust chamber regenerative cooling in semi-cryogenic rocket engine due to its enhanced thermal properties.

38 citations

Journal ArticleDOI
TL;DR: In this article, the effect of pylon on the mixing of secondary jet injection into supersonic mainstream flow at Mach 1.65 was investigated and the results are compared with those obtained by normal injection from a flat plate.

38 citations

Journal ArticleDOI
TL;DR: In this article, an experimental and numerical study is conducted on a rectangular open cavity with a length to depth ratio of 2 at Mach number 1.71 by placing a subcavity at different locations.
Abstract: An experimental and numerical study is conducted on a rectangular open cavity with a length to depth ratio of 2 at Mach number 1.71 by placing a subcavity at different locations. The subcavity at the front wall has already been established as a passive control device experimentally. In addition, it has been observed that it can act as a passive resonator. However, in the current study, it is found that the location of the subcavity and its dimensions play a crucial role in determining the types of oscillations existing inside the cavity. Cavity models with a subcavity length to main cavity length of 0.2 (l/L = 0.20) were investigated by placing the subcavity at the front wall, aft wall, and simultaneously at both front and aft walls. High speed schlieren visualization revealed the presence of different shock features associated with the cavity flow field. Statistical techniques such as fast Fourier transform, spectrogram, coherence, and correlation are employed to analyze the unsteady pressure data. Numerical computations are carried out to validate the experimental results and also to explore the flow physics. The front wall subcavity acts as a passive control device with a maximum reduction of 34.1 dB in the sound pressure level for the most dominant tone, and there is also a notable reduction in the overall sound pressure level by 11.7 dB. In the case of front wall subcavity, the acoustic wave gets inclined as it interacts with the subcavity, thereby displacing the shear layer to form a dome-shaped structure. The aft wall subcavity acts as a passive resonator with distinct fluid-resonant oscillations and the respective modal frequencies differ widely from those predicted using Rossiter’s expression. The shear layer interacts with a recirculation region formed inside the subcavity at the aft wall, thereby mitigating the effect due to direct impingement of the shear layer on the aft wall. The subcavity at both walls acts as a passive suppression device with a reduction of 34.9 dB in the sound pressure level for the most dominant mode and also with a reduction of 14.5 dB in the overall sound pressure level.

33 citations


Cited by
More filters
Book
01 Dec 1988
TL;DR: In this paper, the basic processes in Atomization are discussed, and the drop size distributions of sprays are discussed.Preface 1.General Considerations 2.Basic Processes of Atomization 3.Drop Size Distributions of Sprays 4.Atomizers 5.Flow in Atomizers 6.AtOMizer Performance 7.External Spray Charcteristics 8.Drop Evaporation 9.Drop Sizing Methods Index
Abstract: Preface 1.General Considerations 2.Basic Processes in Atomization 3.Drop Size Distributions of Sprays 4.Atomizers 5.Flow in Atomizers 6.Atomizer Performance 7.External Spray Charcteristics 8.Drop Evaporation 9.Drop Sizing Methods Index

1,214 citations

Journal Article
TL;DR: The International Nanofluid Property Benchmark Exercise (INPBE) as discussed by the authors was held in 1998, where the thermal conductivity of identical samples of colloidally stable dispersions of nanoparticles or "nanofluids" was measured by over 30 organizations worldwide, using a variety of experimental approaches, including the transient hot wire method, steady state methods, and optical methods.
Abstract: This article reports on the International Nanofluid Property Benchmark Exercise, or INPBE, in which the thermal conductivity of identical samples of colloidally stable dispersions of nanoparticles or “nanofluids,” was measured by over 30 organizations worldwide, using a variety of experimental approaches, including the transient hot wire method, steady-state methods, and optical methods. The nanofluids tested in the exercise were comprised of aqueous and nonaqueous basefluids, metal and metal oxide particles, near-spherical and elongated particles, at low and high particle concentrations. The data analysis reveals that the data from most organizations lie within a relatively narrow band (±10% or less) about the sample average with only few outliers. The thermal conductivity of the nanofluids was found to increase with particle concentration and aspect ratio, as expected from classical theory. There are (small) systematic differences in the absolute values of the nanofluid thermal conductivity among the various experimental approaches; however, such differences tend to disappear when the data are normalized to the measured thermal conductivity of the basefluid. The effective medium theory developed for dispersed particles by Maxwell in 1881 and recently generalized by Nan et al. [J. Appl. Phys. 81, 6692 (1997)], was found to be in good agreement with the experimental data, suggesting that no anomalous enhancement of thermal conductivity was achieved in the nanofluids tested in this exercise.

881 citations

Journal ArticleDOI
TL;DR: The preparation of nanofluids by various techniques, methods of stabilization, stability measurement techniques, thermal conductivity and heat capacity studies, proposed mechanisms of heat transport, theoretical models on thermal Conductivity, factors influencing k and the effect of nanoinclusions in PCM are discussed in this review.

341 citations

Journal ArticleDOI
TL;DR: In this paper, a brief review on theoretical models is presented precisely, and the effects of nanoparticles' shape and size, temperature, volume concentration, pH, etc. are organized together and reviewed.
Abstract: Since the past decade, rapid development in nanotechnology has produced several aspects for the scientists and technologists to look into. Nanofluid is one of the incredible outcomes of such advancement. Nanofluids (colloidal suspensions of metallic and nonmetallic nanoparticles in conventional base fluids) are best known for their remarkable change to enhanced heat transfer abilities. Earlier research work has already acutely focused on thermal conductivity of nanofluids. However, viscosity is another important property that needs the same attention due to its very crucial impact on heat transfer. Therefore, viscosity of nanofluids should be thoroughly investigated before use for practical heat transfer applications. In this contribution, a brief review on theoretical models is presented precisely. Furthermore, the effects of nanoparticles’ shape and size, temperature, volume concentration, pH, etc. are organized together and reviewed.

288 citations