scispace - formally typeset
Search or ask a question
Author

Arda Sahiner

Bio: Arda Sahiner is an academic researcher from Stanford University. The author has contributed to research in topics: Convex optimization & Computer science. The author has an hindex of 3, co-authored 9 publications receiving 37 citations.

Papers
More filters
Posted Content
TL;DR: A convex duality framework is advocated that makes a two-layer fully-convolutional ReLU denoising network amenable to convex optimization and offers the optimum training with convex solvers, but also facilitates interpreting training and prediction.
Abstract: Neural networks have shown tremendous potential for reconstructing high-resolution images in inverse problems. The non-convex and opaque nature of neural networks, however, hinders their utility in sensitive applications such as medical imaging. To cope with this challenge, this paper advocates a convex duality framework that makes a two-layer fully-convolutional ReLU denoising network amenable to convex optimization. The convex dual network not only offers the optimum training with convex solvers, but also facilitates interpreting training and prediction. In particular, it implies training neural networks with weight decay regularization induces path sparsity while the prediction is piecewise linear filtering. A range of experiments with MNIST and fastMRI datasets confirm the efficacy of the dual network optimization problem.

20 citations

Proceedings ArticleDOI
17 May 2022
TL;DR: In this paper , the authors derive equivalent finite-dimensional convex problems that are interpretable and solvable to global optimality for the non-linear dot-product self-attention, and alternative mechanisms such as MLP-mixer and Fourier Neural Operator (FNO).
Abstract: Vision transformers using self-attention or its proposed alternatives have demonstrated promising results in many image related tasks. However, the underpinning inductive bias of attention is not well understood. To address this issue, this paper analyzes attention through the lens of convex duality. For the non-linear dot-product self-attention, and alternative mechanisms such as MLP-mixer and Fourier Neural Operator (FNO), we derive equivalent finite-dimensional convex problems that are interpretable and solvable to global optimality. The convex programs lead to {\it block nuclear-norm regularization} that promotes low rank in the latent feature and token dimensions. In particular, we show how self-attention networks implicitly clusters the tokens, based on their latent similarity. We conduct experiments for transferring a pre-trained transformer backbone for CIFAR-100 classification by fine-tuning a variety of convex attention heads. The results indicate the merits of the bias induced by attention compared with the existing MLP or linear heads.

14 citations

Proceedings Article
03 May 2021
TL;DR: In particular, the authors showed that the non-convex neural network training problem is equivalent to a finite-dimensional convex copositive program, and showed how neural networks implicitly attempt to solve copoitive programs via semi-nonnegative matrix factorization.
Abstract: We describe the convex semi-infinite dual of the two-layer vector-output ReLU neural network training problem. This semi-infinite dual admits a finite dimensional representation, but its support is over a convex set which is difficult to characterize. In particular, we demonstrate that the non-convex neural network training problem is equivalent to a finite-dimensional convex copositive program. Our work is the first to identify this strong connection between the global optima of neural networks and those of copositive programs. We thus demonstrate how neural networks implicitly attempt to solve copositive programs via semi-nonnegative matrix factorization, and draw key insights from this formulation. We describe the first algorithms for provably finding the global minimum of the vector output neural network training problem, which are polynomial in the number of samples for a fixed data rank, yet exponential in the dimension. However, in the case of convolutional architectures, the computational complexity is exponential in only the filter size and polynomial in all other parameters. We describe the circumstances in which we can find the global optimum of this neural network training problem exactly with soft-thresholded SVD, and provide a copositive relaxation which is guaranteed to be exact for certain classes of problems, and which corresponds with the solution of Stochastic Gradient Descent in practice.

11 citations

Proceedings Article
02 Feb 2022
TL;DR: This work leverages a convex reformulation of the standard weight-decay penalized training problem as a set of group- (cid:96) 1 -regularized data-local models, where locality is enforced by polyhedral cone constraints.
Abstract: We develop fast algorithms and robust software for convex optimization of two-layer neural networks with ReLU activation functions. Our work leverages a convex reformulation of the standard weight-decay penalized training problem as a set of group- (cid:96) 1 -regularized data-local models, where locality is enforced by polyhedral cone constraints. In the special case of zero-regularization, we show that this problem is exactly equivalent to unconstrained optimization of a convex “gated ReLU” network. For problems with non-zero regularization, we show that convex gated ReLU models obtain data-dependent approximation bounds for the ReLU training problem. To optimize the convex reformulations, we develop an accelerated proximal gradient method and a practical augmented Lagrangian solver. We show that these approaches are faster than standard training heuristics for the non-convex problem, such as SGD, and outperform commercial interior-point solvers. Experimentally, we verify our theoretical results, explore the group- (cid:96) 1 regularization path, and scale convex optimization for neural networks to image classification on MNIST and CIFAR-10. equivalent models. We show that unregularized ReLU networks full out of five random

10 citations

Posted Content
TL;DR: In this article, an analytic framework based on convex duality is introduced to obtain exact convex representations of weight-decay regularized ReLU networks with BN, which can be trained in polynomial-time.
Abstract: Batch Normalization (BN) is a commonly used technique to accelerate and stabilize training of deep neural networks. Despite its empirical success, a full theoretical understanding of BN is yet to be developed. In this work, we analyze BN through the lens of convex optimization. We introduce an analytic framework based on convex duality to obtain exact convex representations of weight-decay regularized ReLU networks with BN, which can be trained in polynomial-time. Our analyses also show that optimal layer weights can be obtained as simple closed-form formulas in the high-dimensional and/or overparameterized regimes. Furthermore, we find that Gradient Descent provides an algorithmic bias effect on the standard non-convex BN network, and we design an approach to explicitly encode this implicit regularization into the convex objective. Experiments with CIFAR image classification highlight the effectiveness of this explicit regularization for mimicking and substantially improving the performance of standard BN networks.

10 citations


Cited by
More filters
Posted Content
TL;DR: It is shown that a set of optimal hidden layer weights for a norm regularized DNN training problem can be explicitly found as the extreme points of a convex set and it is proved that each optimal weight matrix is rank-$K$ and aligns with the previous layers via duality.
Abstract: We study regularized deep neural networks (DNNs) and introduce a convex analytic framework to characterize the structure of the hidden layers. We show that a set of optimal hidden layer weights for a norm regularized DNN training problem can be explicitly found as the extreme points of a convex set. For the special case of deep linear networks, we prove that each optimal weight matrix aligns with the previous layers via duality. More importantly, we apply the same characterization to deep ReLU networks with whitened data and prove the same weight alignment holds. As a corollary, we also prove that norm regularized deep ReLU networks yield spline interpolation for one-dimensional datasets which was previously known only for two-layer networks. Furthermore, we provide closed-form solutions for the optimal layer weights when data is rank-one or whitened. The same analysis also applies to architectures with batch normalization even for arbitrary data. Therefore, we obtain a complete explanation for a recent empirical observation termed Neural Collapse where class means collapse to the vertices of a simplex equiangular tight frame.

45 citations

Posted Content
TL;DR: A convex analytic framework for ReLU neural networks is developed which elucidates the inner workings of hidden neurons and their function space characteristics and establishes a connection to $\ell_0$-$\ell_1$ equivalence for neural networks analogous to the minimal cardinality solutions in compressed sensing.
Abstract: We develop a convex analytic approach to analyze finite width two-layer ReLU networks. We first prove that an optimal solution to the regularized training problem can be characterized as extreme points of a convex set, where simple solutions are encouraged via its convex geometrical properties. We then leverage this characterization to show that an optimal set of parameters yield linear spline interpolation for regression problems involving one dimensional or rank-one data. We also characterize the classification decision regions in terms of a kernel matrix and minimum $\ell_1$-norm solutions. This is in contrast to Neural Tangent Kernel which is unable to explain predictions of finite width networks. Our convex geometric characterization also provides intuitive explanations of hidden neurons as auto-encoders. In higher dimensions, we show that the training problem can be cast as a finite dimensional convex problem with infinitely many constraints. Then, we apply certain convex relaxations and introduce a cutting-plane algorithm to globally optimize the network. We further analyze the exactness of the relaxations to provide conditions for the convergence to a global optimum. Our analysis also shows that optimal network parameters can be also characterized as interpretable closed-form formulas in some practically relevant special cases.

34 citations

Posted Content
TL;DR: A convex analytic framework utilizing semi-infinite duality is developed to obtain equivalent convex optimization problems for several two- and three-layer CNN architectures, and it is proved that two-layerCNNs can be globally optimized via an $\ell_2$ norm regularized convex program.
Abstract: We study training of Convolutional Neural Networks (CNNs) with ReLU activations and introduce exact convex optimization formulations with a polynomial complexity with respect to the number of data samples, the number of neurons, and data dimension. More specifically, we develop a convex analytic framework utilizing semi-infinite duality to obtain equivalent convex optimization problems for several two- and three-layer CNN architectures. We first prove that two-layer CNNs can be globally optimized via an $\ell_2$ norm regularized convex program. We then show that multi-layer circular CNN training problems with a single ReLU layer are equivalent to an $\ell_1$ regularized convex program that encourages sparsity in the spectral domain. We also extend these results to three-layer CNNs with two ReLU layers. Furthermore, we present extensions of our approach to different pooling methods, which elucidates the implicit architectural bias as convex regularizers.

20 citations

Posted Content
10 Jun 2020
TL;DR: It is proved that the path-connected sublevel set, i.e., valleys, of a neural network which is Clarke stationary with respect to the training loss with weight decay regularization contains a specific, simpler and more structured neural network, which is called its minimal representation.
Abstract: We are interested in two-layer ReLU neural networks from an optimization perspective. We prove that the path-connected sublevel set, i.e., valleys, of a neural network which is Clarke stationary with respect to the training loss with weight decay regularization contains a specific, simpler and more structured neural network, which we call its minimal representation. We provide an explicit construction of a continuous path between the neural network and its minimal counterpart. Importantly, we show that characterizing the optimality properties of a neural network can be reduced to characterizing those of its minimal representation. Thanks to the specific structure of minimal neural networks, we show that we can embed them into a convex optimization landscape. Leveraging convexity, we are able to (i) characterize the minimal size of the hidden layer so that the neural network optimization landscape has no spurious valleys and (ii) provide a polynomial-time algorithm for checking if a neural network is a global minimum of the training loss. Overall, we provide a rich framework for studying the landscape of the neural network training loss through our embedding to a convex optimization landscape.

18 citations

Proceedings ArticleDOI
17 May 2022
TL;DR: In this paper , the authors derive equivalent finite-dimensional convex problems that are interpretable and solvable to global optimality for the non-linear dot-product self-attention, and alternative mechanisms such as MLP-mixer and Fourier Neural Operator (FNO).
Abstract: Vision transformers using self-attention or its proposed alternatives have demonstrated promising results in many image related tasks. However, the underpinning inductive bias of attention is not well understood. To address this issue, this paper analyzes attention through the lens of convex duality. For the non-linear dot-product self-attention, and alternative mechanisms such as MLP-mixer and Fourier Neural Operator (FNO), we derive equivalent finite-dimensional convex problems that are interpretable and solvable to global optimality. The convex programs lead to {\it block nuclear-norm regularization} that promotes low rank in the latent feature and token dimensions. In particular, we show how self-attention networks implicitly clusters the tokens, based on their latent similarity. We conduct experiments for transferring a pre-trained transformer backbone for CIFAR-100 classification by fine-tuning a variety of convex attention heads. The results indicate the merits of the bias induced by attention compared with the existing MLP or linear heads.

14 citations