scispace - formally typeset
A

Arend M. van der Zande

Researcher at University of Illinois at Urbana–Champaign

Publications -  90
Citations -  21581

Arend M. van der Zande is an academic researcher from University of Illinois at Urbana–Champaign. The author has contributed to research in topics: Graphene & Monolayer. The author has an hindex of 35, co-authored 77 publications receiving 18984 citations. Previous affiliations of Arend M. van der Zande include Cornell University & Columbia University.

Papers
More filters
Journal ArticleDOI

Electromechanical Resonators from Graphene Sheets

TL;DR: The thinnest resonator consists of a single suspended layer of atoms and represents the ultimate limit of two-dimensional nanoelectromechanical systems and is demonstrated down to 8 × 10–4 electrons per root hertz.
Journal ArticleDOI

Impermeable atomic membranes from graphene sheets.

TL;DR: This pressurized graphene membrane is the world's thinnest balloon and provides a unique separation barrier between 2 distinct regions that is only one atom thick.
Journal ArticleDOI

Atomically thin p–n junctions with van der Waals heterointerfaces

TL;DR: The tunnelling-assisted interlayer recombination of the majority carriers is responsible for the tunability of the electronic and optoelectronic processes in atomically thin p-n heterojunctions fabricated using van der Waals assembly of transition-metal dichalcogenides.
Journal ArticleDOI

Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide

TL;DR: In this paper, single-crystal islands and polycrystals containing tilt and mirror twin grain boundaries are characterized, and the influence of the grain boundaries on the material properties of molybdenum disulphide is assessed.
Journal ArticleDOI

Grains and grain boundaries in single-layer graphene atomic patchwork quilts

TL;DR: This work determines the location and identity of every atom at a grain boundary and finds that different grains stitch together predominantly through pentagon–heptagon pairs, and reveals an unexpectedly small and intricate patchwork of grains connected by tilt boundaries.