scispace - formally typeset
Search or ask a question
Author

Arezou A. Ghazani

Bio: Arezou A. Ghazani is an academic researcher from Harvard University. The author has contributed to research in topics: Germline & Germline mutation. The author has an hindex of 18, co-authored 29 publications receiving 6154 citations. Previous affiliations of Arezou A. Ghazani include Ontario Institute for Cancer Research & University of Toronto.

Papers
More filters
Journal ArticleDOI
TL;DR: The intracellular uptake of different sized and shaped colloidal gold nanoparticles is investigated and it is shown that kinetics and saturation concentrations are highly dependent upon the physical dimensions of the nanoparticles.
Abstract: We investigated the intracellular uptake of different sized and shaped colloidal gold nanoparticles. We showed that kinetics and saturation concentrations are highly dependent upon the physical dimensions of the nanoparticles (e.g., uptake half-life of 14, 50, and 74 nm nanoparticles is 2.10, 1.90, and 2.24 h, respectively). The findings from this study will have implications in the chemical design of nanostructures for biomedical applications (e.g., tuning intracellular delivery rates and amounts by nanoscale dimensions and engineering complex, multifunctional nanostructures for imaging and therapeutics).

4,383 citations

Journal ArticleDOI
18 Jan 2008-Small
TL;DR: Results indicate that gold nanorods are well suited for therapeutic applications, such as thermal cancer therapy, due to their tunable cell uptake and low toxicity.
Abstract: Through the use of various layer-by-layer polyelectrolyte (PE) coating schemes, such as the common poly(diallyldimethylammonium chloride)-poly(4-styrenesulfonic acid) (PDADMAC-PSS) system, the mammalian cellular uptake of gold nanorods can be tuned from very high to very low by manipulating the surface charge and functional groups of the PEs. The toxicity of these nanorods is also examined. Since the PE coatings are individually toxic, the toxicity of nanorods coated in these PEs is measured and cells are found to be greater than 90% viable in nearly all cases, even at very high concentrations. This viability assay may not be a complete indicator of toxicity, and thus gene-expression analysis is used to examine the molecular changes of cells exposed to PDADMAC-coated nanorods, which enter cells at the highest concentrations. Indicators of cell stress, such as heat-shock proteins, are not significantly up- or down-regulated following nanorod uptake, which suggests that PDADMAC-coated gold nanorods have negligible impact on cell function. Furthermore, a very low number of genes experience any significant change in expression (0.35% of genes examined). These results indicate that gold nanorods are well suited for therapeutic applications, such as thermal cancer therapy, due to their tunable cell uptake and low toxicity.

663 citations

Journal ArticleDOI
TL;DR: Although an initial pilot of the ACMG-AMP guidelines did not lead to increased concordance in variant interpretation, comparing variant interpretations to identify differences and having a common framework to facilitate resolution of those differences were beneficial for improving agreement, allowing iterative movement toward increased reporting consistency for variants in genes associated with monogenic disease.
Abstract: Evaluating the pathogenicity of a variant is challenging given the plethora of types of genetic evidence that laboratories consider. Deciding how to weigh each type of evidence is difficult, and standards have been needed. In 2015, the American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) published guidelines for the assessment of variants in genes associated with Mendelian diseases. Nine molecular diagnostic laboratories involved in the Clinical Sequencing Exploratory Research (CSER) consortium piloted these guidelines on 99 variants spanning all categories (pathogenic, likely pathogenic, uncertain significance, likely benign, and benign). Nine variants were distributed to all laboratories, and the remaining 90 were evaluated by three laboratories. The laboratories classified each variant by using both the laboratory's own method and the ACMG-AMP criteria. The agreement between the two methods used within laboratories was high (K-alpha = 0.91) with 79% concordance. However, there was only 34% concordance for either classification system across laboratories. After consensus discussions and detailed review of the ACMG-AMP criteria, concordance increased to 71%. Causes of initial discordance in ACMG-AMP classifications were identified, and recommendations on clarification and increased specification of the ACMG-AMP criteria were made. In summary, although an initial pilot of the ACMG-AMP guidelines did not lead to increased concordance in variant interpretation, comparing variant interpretations to identify differences and having a common framework to facilitate resolution of those differences were beneficial for improving agreement, allowing iterative movement toward increased reporting consistency for variants in genes associated with monogenic disease.

437 citations

Journal ArticleDOI
TL;DR: A miniature device that combines microfluidics and magnets to measure CTCs in patient blood at single-cell resolution and appears to be a more sensitive cell counter than existing devices, with the potential to change patient management and disease monitoring in the clinic.
Abstract: The ability to detect rare cells (<100 cells/ml whole blood) and obtain quantitative measurements of specific biomarkers on single cells is increasingly important in basic biomedical research. Implementing such methodology for widespread use in the clinic, however, has been hampered by low cell density, small sample sizes, and requisite sample purification. To overcome these challenges, we have developed a microfluidic chip-based micro-Hall detector (μHD), which can directly measure single, immunomagnetically tagged cells in whole blood. The μHD can detect single cells even in the presence of vast numbers of blood cells and unbound reactants, and does not require any washing or purification steps. In addition, the high bandwidth and sensitivity of the semiconductor technology used in the μHD enables high-throughput screening (currently ~10(7) cells/min). The clinical use of the μHD chip was demonstrated by detecting circulating tumor cells in whole blood of 20 ovarian cancer patients at higher sensitivity than currently possible with clinical standards. Furthermore, the use of a panel of magnetic nanoparticles, distinguished with unique magnetization properties and bio-orthogonal chemistry, allowed simultaneous detection of the biomarkers epithelial cell adhesion molecule (EpCAM), human epidermal growth factor receptor 2 (HER2)/neu, and epidermal growth factor receptor (EGFR) on individual cells. This cost-effective, single-cell analytical technique is well suited to perform molecular and cellular diagnosis of rare cells in the clinic.

231 citations

Journal ArticleDOI
Andrew J. Aguirre, Jonathan A. Nowak1, Jonathan A. Nowak2, Nicholas D. Camarda, Richard A. Moffitt3, Arezou A. Ghazani4, Arezou A. Ghazani2, Arezou A. Ghazani1, Mehlika Hazar-Rethinam1, Srivatsan Raghavan, Jaegil Kim4, Lauren K. Brais1, Dorisanne Y. Ragon1, Marisa W. Welch1, Emma Reilly1, Devin McCabe, Lori Marini1, Lori Marini2, Kristin Anderka4, Karla Helvie2, Karla Helvie1, Nelly Oliver1, Nelly Oliver2, Ana Babic1, Annacarolina da Silva1, Annacarolina da Silva2, Brandon Nadres1, Emily E. Van Seventer1, Heather A. Shahzade1, Joseph P. St. Pierre1, Kelly P. Burke2, Kelly P. Burke1, Thomas E. Clancy2, Thomas E. Clancy1, James M. Cleary1, James M. Cleary2, Leona A. Doyle2, Leona A. Doyle1, Kunal Jajoo1, Kunal Jajoo2, Nadine Jackson McCleary2, Nadine Jackson McCleary1, Jeffrey A. Meyerhardt1, Jeffrey A. Meyerhardt2, Janet E. Murphy1, Kimmie Ng2, Kimmie Ng1, Anuj K. Patel1, Anuj K. Patel2, Kimberly Perez1, Kimberly Perez2, Michael H. Rosenthal2, Michael H. Rosenthal1, Douglas A. Rubinson2, Douglas A. Rubinson1, Marvin Ryou1, Marvin Ryou2, Geoffrey I. Shapiro2, Geoffrey I. Shapiro1, Ewa Sicinska1, Stuart G. Silverman2, Stuart G. Silverman1, Rebecca J. Nagy, Richard B. Lanman, Deborah Knoerzer, Dean Welsch, Matthew B. Yurgelun2, Matthew B. Yurgelun1, Charles S. Fuchs, Levi A. Garraway, Gad Getz1, Gad Getz4, Jason L. Hornick2, Jason L. Hornick1, Bruce E. Johnson, Matthew H. Kulke2, Matthew H. Kulke1, Robert J. Mayer2, Robert J. Mayer1, Jeffrey W. Miller1, Paul B. Shyn2, Paul B. Shyn1, David A. Tuveson5, Nikhil Wagle, Jen Jen Yeh6, William C. Hahn, Ryan B. Corcoran1, Scott L. Carter, Brian M. Wolpin2, Brian M. Wolpin1 
TL;DR: Using an integrated multidisciplinary biopsy program, it is demonstrated that real-time genomic characterization of advanced PDAC can identify clinically relevant alterations that inform management of this difficult disease.
Abstract: Clinically relevant subtypes exist for pancreatic ductal adenocarcinoma (PDAC), but molecular characterization is not yet standard in clinical care. We implemented a biopsy protocol to perform time-sensitive whole exome sequencing and RNA-sequencing for patients with advanced PDAC. Therapeutically relevant genomic alterations were identified in 48% (34/71) and pathogenic/likely pathogenic germline alterations in 18% (13/71) of patients. Overall, 30% (21/71) of enrolled patients experienced a change in clinical management as a result of genomic data. Twenty-six patients had germline and/or somatic alterations in DNA-damage repair genes, and 5 additional patients had mutational signatures of homologous recombination deficiency but no identified causal genomic alteration. Two patients had oncogenic in-frame BRAF deletions, and we report the first clinical evidence that this alteration confers sensitivity to MAP-kinase pathway inhibition. Moreover, we identified tumor/stroma gene expression signatures with clinical relevance. Collectively, these data demonstrate the feasibility and value of real-time genomic characterization of advanced PDAC.

220 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Probing the various interfaces of nanoparticle/biological interfaces allows the development of predictive relationships between structure and activity that are determined by nanomaterial properties such as size, shape, surface chemistry, roughness and surface coatings.
Abstract: Rapid growth in nanotechnology is increasing the likelihood of engineered nanomaterials coming into contact with humans and the environment. Nanoparticles interacting with proteins, membranes, cells, DNA and organelles establish a series of nanoparticle/biological interfaces that depend on colloidal forces as well as dynamic biophysicochemical interactions. These interactions lead to the formation of protein coronas, particle wrapping, intracellular uptake and biocatalytic processes that could have biocompatible or bioadverse outcomes. For their part, the biomolecules may induce phase transformations, free energy releases, restructuring and dissolution at the nanomaterial surface. Probing these various interfaces allows the development of predictive relationships between structure and activity that are determined by nanomaterial properties such as size, shape, surface chemistry, roughness and surface coatings. This knowledge is important from the perspective of safe use of nanomaterials.

6,075 citations

Journal ArticleDOI
TL;DR: Novel engineering approaches are discussed that capitalize on the growing understanding of tumour biology and nano–bio interactions to develop more effective nanotherapeutics for cancer patients.
Abstract: The intrinsic limits of conventional cancer therapies prompted the development and application of various nanotechnologies for more effective and safer cancer treatment, herein referred to as cancer nanomedicine. Considerable technological success has been achieved in this field, but the main obstacles to nanomedicine becoming a new paradigm in cancer therapy stem from the complexities and heterogeneity of tumour biology, an incomplete understanding of nano-bio interactions and the challenges regarding chemistry, manufacturing and controls required for clinical translation and commercialization. This Review highlights the progress, challenges and opportunities in cancer nanomedicine and discusses novel engineering approaches that capitalize on our growing understanding of tumour biology and nano-bio interactions to develop more effective nanotherapeutics for cancer patients.

3,800 citations

Journal ArticleDOI
24 Feb 2009-ACS Nano
TL;DR: A possible mechanism of toxicity is proposed which involves disruption of the mitochondrial respiratory chain by Ag-np leading to production of ROS and interruption of ATP synthesis, which in turn cause DNA damage.
Abstract: Silver nanoparticles (Ag-np) are being used increasingly in wound dressings, catheters, and various household products due to their antimicrobial activity. The toxicity of starch-coated silver nanoparticles was studied using normal human lung fibroblast cells (IMR-90) and human glioblastoma cells (U251). The toxicity was evaluated using changes in cell morphology, cell viability, metabolic activity, and oxidative stress. Ag-np reduced ATP content of the cell caused damage to mitochondria and increased production of reactive oxygen species (ROS) in a dose-dependent manner. DNA damage, as measured by single cell gel electrophoresis (SCGE) and cytokinesis blocked micronucleus assay (CBMN), was also dose-dependent and more prominent in the cancer cells. The nanoparticle treatment caused cell cycle arrest in G2/M phase possibly due to repair of damaged DNA. Annexin-V propidium iodide (PI) staining showed no massive apoptosis or necrosis. The transmission electron microscopic (TEM) analysis indicated the presen...

3,261 citations

Journal ArticleDOI
TL;DR: The rationales for these studies, the current progress in studies of the interactions of nanomaterials with biological systems, and a perspective on the long-term implications of these findings are provided.
Abstract: An understanding of the interactions between nanoparticles and biological systems is of significant interest. Studies aimed at correlating the properties of nanomaterials such as size, shape, chemical functionality, surface charge, and composition with biomolecular signaling, biological kinetics, transportation, and toxicity in both cell culture and animal experiments are under way. These fundamental studies will provide a foundation for engineering the next generation of nanoscale devices. Here, we provide rationales for these studies, review the current progress in studies of the interactions of nanomaterials with biological systems, and provide a perspective on the long-term implications of these findings.

2,969 citations

Journal ArticleDOI
TL;DR: It is argued that gold nanotechnology-enabled biomedicine is not simply an act of 'gilding the (nanomedicinal) lily', but that a new 'Golden Age' of biomedical nanotechnology is truly upon us.
Abstract: Gold nanoparticles have been used in biomedical applications since their first colloidal syntheses more than three centuries ago. However, over the past two decades, their beautiful colors and unique electronic properties have also attracted tremendous attention due to their historical applications in art and ancient medicine and current applications in enhanced optoelectronics and photovoltaics. In spite of their modest alchemical beginnings, gold nanoparticles exhibit physical properties that are truly different from both small molecules and bulk materials, as well as from other nanoscale particles. Their unique combination of properties is just beginning to be fully realized in range of medical diagnostic and therapeutic applications. This critical review will provide insights into the design, synthesis, functionalization, and applications of these artificial molecules in biomedicine and discuss their tailored interactions with biological systems to achieve improved patient health. Further, we provide a survey of the rapidly expanding body of literature on this topic and argue that gold nanotechnology-enabled biomedicine is not simply an act of ‘gilding the (nanomedicinal) lily’, but that a new ‘Golden Age’ of biomedical nanotechnology is truly upon us. Moving forward, the most challenging nanoscience ahead of us will be to find new chemical and physical methods of functionalizing gold nanoparticles with compounds that can promote efficient binding, clearance, and biocompatibility and to assess their safety to other biological systems and their long-term term effects on human health and reproduction (472 references).

2,712 citations