scispace - formally typeset
Search or ask a question
Author

Arghya Narayan Banerjee

Bio: Arghya Narayan Banerjee is an academic researcher from Yeungnam University. The author has contributed to research in topics: Thin film & Sputtering. The author has an hindex of 29, co-authored 88 publications receiving 2914 citations. Previous affiliations of Arghya Narayan Banerjee include University of Colorado Boulder & University of Nevada, Las Vegas.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the origin of p-type conductivity in transparent oxides is discussed and an up-to-date and comprehensive description of different P-type transparent conducting oxide thin films is presented.

328 citations

Journal ArticleDOI
TL;DR: Applications and future directions of nanostructured TiO2 are considered in the context of various photoinduced phenomena such as hydrogen production, electricity generation via dye-sensitized solar cells, photokilling and self-cleaning effect, photo-oxidation of organic pollutant, wastewater management, and organic synthesis.
Abstract: Recent advances in basic fabrication techniques of TiO 2 -based nanomaterials such as nanoparticles, nanowires, nanoplatelets, and both physical- and solution-based techniques have been adopted by various research groups around the world. Our research focus has been mainly on various deposition parameters used for fabricating nanostructured materials, including TiO 2 -organic/inorganic nanocomposite materials. Technically, TiO 2 shows relatively high reactivity under ultraviolet light, the energy of which exceeds the band gap of TiO 2 . The development of photocatalysts exhibiting high reactivity under visible light allows the main part of the solar spectrum to be used. Visible light-activated TiO 2 could be prepared by doping or sensitizing. As far as doping of TiO 2 is concerned, in obtaining tailored material with improved properties, metal and nonmetal doping has been performed in the context of improved photoactivity. Nonmetal doping seems to be more promising than metal doping. TiO 2 represents an effective photocatalyst for water and air purification and for self-cleaning surfaces. Additionally, it can be used as an antibacterial agent because of its strong oxidation activity and superhydrophilicity. Therefore, applications of TiO 2 in terms of photocatalytic activities are discussed here. The basic mechanisms of the photoactivities of TiO 2 and nanostructures are considered alongside band structure engineering and surface modification in nanostructured TiO 2 in the context of doping. The article reviews the basic structural, optical, and electrical properties of TiO 2 , followed by detailed fabrication techniques of 0-, 1-, and quasi-2-dimensional TiO 2 nanomaterials. Applications and future directions of nanostructured TiO 2 are considered in the context of various photoinduced phenomena such as hydrogen production, electricity generation via dye-sensitized solar cells, photokilling and self-cleaning effect, photo-oxidation of organic pollutant, wastewater management, and organic synthesis.

209 citations

Journal ArticleDOI
TL;DR: The structural, optical and electrical properties of ZnO thin films (260 - 490 nm thick) deposited by direct-current sputtering technique, at a relatively low-substrate temperature (363 K), onto polyethylene terephthalate and glass substrates have been investigated as discussed by the authors.

178 citations

Journal ArticleDOI
TL;DR: An effective strategy to intrinsically improve the conductivity and supercapacitive performance of the hybrids by inducing oxygen vacancies is demonstrated and is expected to provide new insights into improving the electrochemical properties of various composites/hybrids.
Abstract: Zinc oxide (ZnO) nanoparticles (NPs) anchored to carbon nanofiber (CNF) hybrids were synthesized using a facile coprecipitation method. This report demonstrates an effective strategy to intrinsically improve the conductivity and supercapacitive performance of the hybrids by inducing oxygen vacancies. Oxygen deficiency-related defect analyses were performed qualitatively as well as quantitatively using Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. All of the analyses clearly indicate an increase in oxygen deficiencies in the hybrids with an increase in the vacuum-annealing temperature. The nonstoichiometric oxygen vacancy is mainly induced via the migration of the lattice oxygen into interstitial sites at elevated temperature (300 °C), followed by diffusion into the gaseous phase with further increase in the annealing temperature (600 °C) in an oxygen-deficient atmosphere. This induction of oxygen vacancy is corroborated by diffuse refl...

153 citations

Journal ArticleDOI
TL;DR: A comprehensive review on the applications of graphene and its derivatives as biomedical materials has been presented to provide an outlook to the applications, and may open up new horizons to inspire broader interests across various disciplines.
Abstract: Graphene and its derivatives possess some intriguing properties, which generates tremendous interests in various fields, including biomedicine. The biomedical applications of graphene-based nanomaterials have attracted great interests over the last decade, and several groups have started working on this field around the globe. Because of the excellent biocompatibility, solubility and selectivity, graphene and its derivatives have shown great potential as biosensing and bio-imaging materials. Also, due to some unique physico-chemical properties of graphene and its derivatives, such as large surface area, high purity, good bio-functionalizability, easy solubility, high drug loading capacity, capability of easy cell membrane penetration, etc., graphene-based nanomaterials become promising candidates for bio-delivery carriers. Besides, graphene and its derivatives have also shown interesting applications in the fields of cell-culture, cell-growth and tissue engineering. In this article, a comprehensive review on the applications of graphene and its derivatives as biomedical materials has been presented. The unique properties of graphene and its derivatives (such as graphene oxide, reduced graphene oxide, graphane, graphone, graphyne, graphdiyne, fluorographene and their doped versions) have been discussed, followed by discussions on the recent efforts on the applications of graphene and its derivatives in biosensing, bio-imaging, drug delivery and therapy, cell culture, tissue engineering and cell growth. Also, the challenges involved in the use of graphene and its derivatives as biomedical materials are discussed briefly, followed by the future perspectives of the use of graphene-based nanomaterials in bio-applications. The review will provide an outlook to the applications of graphene and its derivatives, and may open up new horizons to inspire broader interests across various disciplines.

149 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A comprehensive review of recent synthetic methods along with associated synthesis mechanisms, characterization, fundamental properties, and promising applications of Cupric oxide (CuO) nanostructures is presented in this article.

1,030 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the state-of-the-art work on nanostructures of metal oxides is presented, focusing on the physical and chemical properties of low-dimensional oxide materials.

843 citations

Journal ArticleDOI
TL;DR: In this article, the crystal structure of 1D TiO2 and the latest development on the fabrication of 2D and 3D 1DTiO2 nanostructured materials are reviewed.
Abstract: One-dimensional TiO2 (1D TiO2) nanomaterials with unique structural and functional properties have been extensively used in various fields including photocatalytic degradation of pollutants, photocatalytic CO2 reduction into energy fuels, water splitting, solar cells, supercapacitors and lithium-ion batteries. In the past few decades, 1D TiO2 nanostructured materials with a well-controlled size and morphology have been designed and synthesized. Compared to 0D and 2D nanostructures, more attention has been paid to 1D TiO2 nanostructures due to their high aspect ratio, large specific surface area, and excellent electronic or ionic charge transport properties. In this review, we present the crystal structure of TiO2 and the latest development on the fabrication of 1D TiO2 nanostructured materials. Besides, we will look into some critical engineering strategies that give rise to the excellent properties of 1D TiO2 nanostructures such as improved enlargement of the surface area, light absorption and efficient separation of electrons/holes that benefit their potential applications. Moreover, their corresponding environmental and energy applications are described and discussed. With the fast development of the current economy and technology, more and more effort will be put into endowing TiO2-based materials with advanced functionalities and other promising applications.

757 citations