scispace - formally typeset
Search or ask a question
Author

Aria F. Olumi

Bio: Aria F. Olumi is an academic researcher from Beth Israel Deaconess Medical Center. The author has contributed to research in topics: Prostate cancer & Cancer. The author has an hindex of 32, co-authored 118 publications receiving 6083 citations. Previous affiliations of Aria F. Olumi include Brigham and Women's Hospital & Harvard University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate that fibroblasts associated with carcinomas stimulate tumor progression of initiated nontumorigenic epithelial cells both in an in vivo tissue recombination system and in vitro coculture system.
Abstract: The present study demonstrates that fibroblasts associated with carcinomas stimulate tumor progression of initiated nontumorigenic epithelial cells both in an in vivo tissue recombination system and in an in vitro coculture system. Human prostatic carcinoma-associated fibroblasts grown with initiated human prostatic epithelial cells dramatically stimulated growth and altered histology of the epithelial population. This effect was not detected when normal prostatic fibroblasts were grown with the initiated epithelial cells under the same experimental conditions. In contrast, carcinoma-associated fibroblasts did not affect growth of normal human prostatic epithelial cells under identical conditions. From these data, we conclude that in this human prostate cancer model, carcinoma-associated fibroblasts stimulate progression of tumorigenesis. Thus, carcinoma-associated fibroblasts can direct tumor progression of an initiated prostate epithelial cell.

1,486 citations

Journal ArticleDOI
14 Sep 1990-Science
TL;DR: 5-methylcytosine functions as an endogenous mutagen and carcinogen in humans, in that methylation seems to increase the potential for mutation at cytosine residues at least by a factor of 10.
Abstract: Direct genomic sequencing revealed that cytosine residues known to have undergone a germ-line mutation in the low density lipoprotein receptor gene or somatic mutations in the p53 tumor suppressor gene were methylated in all normal human tissues analyzed Thus, these mutations should be scored as transitions from 5-methylcytosine to thymine rather than from cytosine to thymine Methylated cytosines occur exclusively at CpG dinucleotides, which, although markedly underrepresented in human DNA, are sites for more than 30 percent of all known disease-related point mutations Thus, 5-methylcytosine functions as an endogenous mutagen and carcinogen in humans, in that methylation seems to increase the potential for mutation at cytosine residues at least by a factor of 10

644 citations

Journal ArticleDOI
TL;DR: HIF rendered VHL-deficient cells sensitive to glutamine deprivation in vitro, and systemic administration of glutaminase inhibitors suppressed the growth of RCC cells as mice xenografts.

270 citations

Journal Article
TL;DR: The data suggest that cumulative genetic damage is sustained in transitional cell carcinomas and that one of the underlying molecular mechanisms distinguishing low grade from high grade tumors involves chromosome 17p.
Abstract: Forty-three transitional cell carcinomas of the bladder of differing grades and stages were examined for reduction to homozygosity for chromosomes 9q, 11p, and 17p. Allelic loss of chromosome 9q was seen in 24 of 38 informative grades II, III, and IV tumors providing further evidence for a bladder tumor suppressor gene on this chromosome. In contrast to the grade-independent involvement of chromosome 9q, allelic losses of chromosomes 11p and 17p were seen only in grade III and IV tumors. The results with chromosome 17p were particularly striking and showed that 0 of 10 grade II versus 20 of 31 grade III and IV tumors had allelic losses for this chromosome harboring the p53 tumor suppressor gene often mutated in other human cancers. The data suggest that cumulative genetic damage is sustained in transitional cell carcinomas and that one of the underlying molecular mechanisms distinguishing low grade from high grade tumors involves chromosome 17p.

267 citations

Journal ArticleDOI
TL;DR: The MR imaging manifestations and pathologic diagnoses of 82 renal masses were reviewed and correlated and findings may allow the characterization of various renal masses and can provide valuable information for their clinical management.
Abstract: Magnetic resonance (MR) imaging is useful in the characterization of renal masses. The MR imaging manifestations and pathologic diagnoses of 82 renal masses were reviewed and correlated. The MR imaging appearance of clear cell type renal cell carcinoma varies depending on the presence of cystic components, hemorrhage, and necrosis. Papillary renal cell carcinomas appear as well-encapsulated masses with homogeneous low signal intensity on T2-weighted images and homogeneous low-level enhancement after the intravenous administration of contrast material, or as cystic hemorrhagic masses with peripheral enhancing papillary projections. Transitional cell carcinoma may be seen as an irregular, enhancing filling defect in the pelvicaliceal system or ureter. Lymphomatous masses are usually hypointense relative to the renal cortex on T2-weighted images and enhance minimally on delayed gadolinium-enhanced images. Bulk fat is a distinguishing feature of angiomyolipoma. Oncocytoma has a variable and nonspecific appearance at MR imaging. MR imaging findings may allow the characterization of various renal masses and can provide valuable information for their clinical management.

235 citations


Cited by
More filters
Journal ArticleDOI
07 Jan 2000-Cell
TL;DR: This work has been supported by the Department of the Army and the National Institutes of Health, and the author acknowledges the support and encouragement of the National Cancer Institute.

28,811 citations

Journal ArticleDOI
05 Jul 1991-Science
TL;DR: The p53 mutational spectrum differs among cancers of the colon, lung, esophagus, breast, liver, brain, reticuloendothelial tissues, and hemopoietic tissues as mentioned in this paper.
Abstract: Mutations in the evolutionarily conserved codons of the p53 tumor suppressor gene are common in diverse types of human cancer. The p53 mutational spectrum differs among cancers of the colon, lung, esophagus, breast, liver, brain, reticuloendothelial tissues, and hemopoietic tissues. Analysis of these mutations can provide clues to the etiology of these diverse tumors and to the function of specific regions of p53. Transitions predominate in colon, brain, and lymphoid malignancies, whereas G:C to T:A transversions are the most frequent substitutions observed in cancers of the lung and liver. Mutations at A:T base pairs are seen more frequently in esophageal carcinomas than in other solid tumors. Most transitions in colorectal carcinomas, brain tumors, leukemias, and lymphomas are at CpG dinucleotide mutational hot spots. G to T transversions in lung, breast, and esophageal carcinomas are dispersed among numerous codons. In liver tumors in persons from geographic areas in which both aflatoxin B1 and hepatitis B virus are cancer risk factors, most mutations are at one nucleotide pair of codon 249. These differences may reflect the etiological contributions of both exogenous and endogenous factors to human carcinogenesis.

8,063 citations

Journal ArticleDOI
TL;DR: This review discusses patterns of DNA methylation and chromatin structure in neoplasia and the molecular alterations that might cause them and/or underlie altered gene expression in cancer.
Abstract: Patterns of DNA methylation and chromatin structure are profoundly altered in neoplasia and include genome-wide losses of, and regional gains in, DNA methylation. The recent explosion in our knowledge of how chromatin organization modulates gene transcription has further highlighted the importance of epigenetic mechanisms in the initiation and progression of human cancer. These epigenetic changes -- in particular, aberrant promoter hypermethylation that is associated with inappropriate gene silencing -- affect virtually every step in tumour progression. In this review, we discuss these epigenetic events and the molecular alterations that might cause them and/or underlie altered gene expression in cancer.

5,492 citations

Journal ArticleDOI
TL;DR: The paradoxical roles of the tumor microenvironment during specific stages of cancer progression and metastasis are discussed, as well as recent therapeutic attempts to re-educate stromal cells within the TME to have anti-tumorigenic effects.
Abstract: Cancers develop in complex tissue environments, which they depend on for sustained growth, invasion and metastasis. Unlike tumor cells, stromal cell types within the tumor microenvironment (TME) are genetically stable and thus represent an attractive therapeutic target with reduced risk of resistance and tumor recurrence. However, specifically disrupting the pro-tumorigenic TME is a challenging undertaking, as the TME has diverse capacities to induce both beneficial and adverse consequences for tumorigenesis. Furthermore, many studies have shown that the microenvironment is capable of normalizing tumor cells, suggesting that re-education of stromal cells, rather than targeted ablation per se, may be an effective strategy for treating cancer. Here we discuss the paradoxical roles of the TME during specific stages of cancer progression and metastasis, as well as recent therapeutic attempts to re-educate stromal cells within the TME to have anti-tumorigenic effects.

5,396 citations

Journal ArticleDOI
22 Apr 1993-Nature
TL;DR: The spontaneous decay of DNA is likely to be a major factor in mutagenesis, carcinogenesis and ageing, and also sets limits for the recovery of DNA fragments from fossils.
Abstract: Although DNA is the carrier of genetic information, it has limited chemical stability. Hydrolysis, oxidation and nonenzymatic methylation of DNA occur at significant rates in vivo, and are counteracted by specific DNA repair processes. The spontaneous decay of DNA is likely to be a major factor in mutagenesis, carcinogenesis and ageing, and also sets limits for the recovery of DNA fragments from fossils.

5,209 citations