scispace - formally typeset
Search or ask a question
Author

Ariane Kahnt

Bio: Ariane Kahnt is an academic researcher from University of Antwerp. The author has contributed to research in topics: Organosulfate & Ozonolysis. The author has an hindex of 13, co-authored 17 publications receiving 823 citations. Previous affiliations of Ariane Kahnt include University of Auckland & Leibniz Institute for Neurobiology.
Topics: Organosulfate, Ozonolysis, Radical, Sulfate, Myrcene

Papers
More filters
Journal ArticleDOI
TL;DR: Atmosphere: State of the Art and Challenges Barbara Nozier̀e,*,† Markus Kalberer,*,‡ Magda Claeys,* James Allan, Barbara D’Anna,† Stefano Decesari, Emanuela Finessi, Marianne Glasius, Irena Grgic,́ Jacqueline F.
Abstract: Atmosphere: State of the Art and Challenges Barbara Nozier̀e,*,† Markus Kalberer,*,‡ Magda Claeys,* James Allan, Barbara D’Anna,† Stefano Decesari, Emanuela Finessi, Marianne Glasius, Irena Grgic,́ Jacqueline F. Hamilton, Thorsten Hoffmann, Yoshiteru Iinuma, Mohammed Jaoui, Ariane Kahnt, Christopher J. Kampf, Ivan Kourtchev,‡ Willy Maenhaut, Nicholas Marsden, Sanna Saarikoski, Jürgen Schnelle-Kreis, Jason D. Surratt, Sönke Szidat, Rafal Szmigielski, and Armin Wisthaler †Ircelyon/CNRS and Universite ́ Lyon 1, 69626 Villeurbanne Cedex, France ‡University of Cambridge, Cambridge CB2 1EW, United Kingdom University of Antwerp, 2000 Antwerp, Belgium The University of Manchester & National Centre for Atmospheric Science, Manchester M13 9PL, United Kingdom Istituto ISAC C.N.R., I-40129 Bologna, Italy University of York, York YO10 5DD, United Kingdom University of Aarhus, 8000 Aarhus C, Denmark National Institute of Chemistry, 1000 Ljubljana, Slovenia Johannes Gutenberg-Universitaẗ, 55122 Mainz, Germany Leibniz-Institut für Troposphar̈enforschung, 04318 Leipzig, Germany Alion Science & Technology, McLean, Virginia 22102, United States Max Planck Institute for Chemistry, 55128 Mainz, Germany Ghent University, 9000 Gent, Belgium Finnish Meteorological Institute, FI-00101 Helsinki, Finland Helmholtz Zentrum München, D-85764 Neuherberg, Germany University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States University of Bern, 3012 Bern, Switzerland Institute of Physical Chemistry PAS, Warsaw 01-224, Poland University of Oslo, 0316 Oslo, Norway

390 citations

Journal ArticleDOI
TL;DR: Organosulfate formation was observed only under acidic conditions for both monoterpene oxides and, to a lesser extent, campholenic aldehyde, indicating that epoxides most likely serve as precursors for some of the organosulfates reported from both ambient and laboratory SOA samples.
Abstract: Evidence from field measurements suggests that organosulfates contribute substantially to ambient secondary organic aerosol (SOA) and might dominate a considerable fraction of total sulfur in tropospheric particles. While alcohols and epoxides are suggested to be most likely precursors for organosulfates in SOA, their reactivity in acidic particles and their potential for organosulfate formation are still unclear. In the present study, a series of aerosol chamber experiments was performed to investigate the formation of organosulfates from reactive uptake of monoterpene oxides (α-pinene oxide and β-pinene oxide) and acid catalysed isomerisation compounds of α-pinene oxide (campholenic aldehyde and carveol) on neutral and acidic sulfate particles. Organosulfate formation was observed only under acidic conditions for both monoterpene oxides and, to a lesser extent, campholenic aldehyde, indicating that epoxides most likely serve as precursors for some of the organosulfates reported from both ambient and laboratory SOA samples. Structures of organosulfates were elucidated by comparing the tandem mass spectrometric, accurate mass and ion mobility data obtained for both the synthesised reference compounds and aerosol chamber-generated organosulfates. In the experiment performed using β-pinene oxide and acidic sulfate seed particles, an organosulfate with a sulfate group at a tertiary carbon atom accounts for 64% of the detected organosulfates. In contrast, an organosulfate with a sulfate group at a secondary carbon atom accounts for 80% of the detected organosulfates in the sample from α-pinene oxide/acidic sulfate particle experiment. The concentration of β-pinene-derived organosulfates was higher than known α-pinene oxidation products such as pinic acid and pinonic acid in an ambient aerosol sample collected at a Norwegian spruce forest site during the summer time, ranging up to 23 ng m−3. Furthermore, α-pinene oxide is found to isomerise readily on the wet seed particle surface, forming campholenic aldehyde. It is likely that other epoxides also play an important role for the formation of organosulfates under atmospheric conditions, and the isomerisation of epoxides may be an important route for the formation of some SOA constituents whose structures do not resemble precursor volatile organic compounds (VOCs).

158 citations

Journal ArticleDOI
TL;DR: In this article, a one-year set of atmospheric PM10 filter samples that were collected at a rural background site in Hamme, Belgium was used to determine four groups of nitro-aromatic compounds (with molecular weights (MWs) of 139, 155, 169, and 183), a-pinene-related nitrooxy-organosulfates (MW 295), and the resin acid dehydroabietic acid (DHAA, MW 300) were quantified using liquid chromatography combined with negative ion electrospray ionization mass spectrometry

90 citations

Journal ArticleDOI
TL;DR: A more complete structural characterization of polar organosulfates that originate from isoprene secondary organic aerosol was achieved, and an important atmospheric finding is the presence of anorganosulfate that is related to methyl vinyl ketone, a major gas-phase oxidation product ofIsoprene.
Abstract: RATIONALE: A considerable fraction of atmospheric particulate fine matter consists of organosulfates, with some of the most polar ones originating from the oxidation of isoprene Their structural characterization provides insights into the nature of gas-phase precursors as well as into formation pathways METHODS: The structures of unknown polar organosulfates present in ambient particulate fine matter were characterized using liquid chromatography/(-)electrospray ionization mass spectrometry (LC/(-)ESI-MS), including ion trap MS(n) and accurate mass measurements, derivatization of the carbonyl group into 2,4-dinitrophenylhydrazones, detailed interpretation of the MS data, and in a selected case comparison of their LC and MS behavior with that of synthesized reference compounds RESULTS: Polar organosulfates with molecular weights (MWs) of 156, 170, 184 and 200 were attributed to/or confirmed as derivatives of glycolic acid (156), lactic acid (170), 1,2-dihydroxy-3-butanone (184), glycolic acid glycolate (200), 2-methylglyceric acid (200), and 2,3-dihydroxybutanoic acid (200) In the case of the MW 184 compound an unambiguous assignment was obtained through synthesis of reference compounds CONCLUSIONS: A more complete structural characterization of polar organosulfates that originate from isoprene secondary organic aerosol was achieved An important atmospheric finding is the presence of an organosulfate that is related to methyl vinyl ketone, a major gas-phase oxidation product of isoprene In addition, minor polar organosulfates related to crotonaldehyde were identified

60 citations

Journal ArticleDOI
TL;DR: In this paper, the green leaf volatiles 3-Z-hexenal serves as a precursor for biogenic secondary organic aersol through the formation of polar organosulfates (Os) with molecular weight (MW) 226.
Abstract: Evidence is provided That the green leaf volatiles 3-Z- hexenal serves as a precursor for biogenic secondary organic aersol through the formation of polar organosulfates (Os) with molecular weight (MW) 226. The MW 226 C-6-OSs were Chemically elucidated, along with structurally similar MW 212 C-5-OSs, whose biogenic precursor is likely related to 3-Z-hexenal but still remains unknown. The MW: 226 and 212 OSs have a substantial abundance in ambient fine aerosol from K-puszta, Hungary, which is comparable to that of the isoprene-related MW 216 OSs, known to be formed: through sulfation of C-5-epoxydiols, second-generation gas-phase photooxidation products of isoprene. Using detailed interpretation of negative-ion electrospray ionization mass spectral data, the MW 226, compounds are assigned to isomeric sulfate esters of 3,4-dihydroxyhex-5-enoic acid with the sulfate group located or C-4 position. Two MW 212 compounds present in: ambient fine aerosol are attributed to isomeric sulfate :esters of 2,3-dihydroxypent-4-enoic acid, of which two are sulfated at C-3 and one is sulfated at C-2. The formation of the MW 226 :OSs is tentatively explained through photooxidation of 3-Z-hexenal in, the gas phase, resulting in alkoxy radical, followed by a rearrangement and subsequent sulfation of the epoxy group in the particle phase.

39 citations


Cited by
More filters
01 Feb 1995
TL;DR: In this paper, the unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio using DFT, MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set.
Abstract: : The unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio. Harmonic force fields are obtained using Density Functional Theory (DFT), MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set. DFT calculations use the Local Spin Density Approximation (LSDA), BLYP, and Becke3LYP (B3LYP) density functionals. Mid-IR spectra predicted using LSDA, BLYP, and B3LYP force fields are of significantly different quality, the B3LYP force field yielding spectra in clearly superior, and overall excellent, agreement with experiment. The MP2 force field yields spectra in slightly worse agreement with experiment than the B3LYP force field. The SCF force field yields spectra in poor agreement with experiment.The basis set dependence of B3LYP force fields is also explored: the 6-31G* and TZ2P basis sets give very similar results while the 3-21G basis set yields spectra in substantially worse agreements with experiment. jg

1,652 citations

Journal ArticleDOI
TL;DR: Understanding of the climate-related properties of atmospheric OC is still incomplete and the specific ways in which OC impacts atmospheric environment and climate forcing are just beginning to be understood.
Abstract: Organic carbon (OC) accounts for a large fraction of atmospheric aerosol and has profound effects on air quality, atmospheric chemistry and climate forcing. Molecular composition of the OC and its evolution during common processes of atmospheric aging have been a subject of extensive research over the last decade (see reviews of Ervens et al.,1 Hallquist et al.,2 Herckes et al.,3 Carlton et al.,4 Kroll and Seinfeld,5 Rudich et al.,6 and Kanakidou et al.7). Even though many fundamental advances have been reported in these studies, our understanding of the climate-related properties of atmospheric OC is still incomplete and the specific ways in which OC impacts atmospheric environment and climate forcing are just beginning to be understood. This review covers one topic of particular interest in this area –environmental chemistry of light-absorbing aerosol OC and its impact on radiative forcing.

1,026 citations

01 Dec 2006
TL;DR: This paper showed that reactive anthropogenic VOCs (AVOCs) produce much larger amounts of SOA than these models predict, even shortly after sunrise, and a significant fraction of the excess SOA is formed from first-generation AVOC oxidation products.
Abstract: [1] The atmospheric chemistry of volatile organic compounds (VOCs) in urban areas results in the formation of ‘photochemical smog’, including secondary organic aerosol (SOA). State-of-the-art SOA models parameterize the results of simulation chamber experiments that bracket the conditions found in the polluted urban atmosphere. Here we show that in the real urban atmosphere reactive anthropogenic VOCs (AVOCs) produce much larger amounts of SOA than these models predict, even shortly after sunrise. Contrary to current belief, a significant fraction of the excess SOA is formed from first-generation AVOC oxidation products. Global models deem AVOCs a very minor contributor to SOA compared to biogenic VOCs (BVOCs). If our results are extrapolated to other urban areas, AVOCs could be responsible for additional 3–25 Tg yr−1 SOA production globally, and cause up to −0.1 W m−2 additional top-of-the-atmosphere radiative cooling.

947 citations

Journal ArticleDOI
TL;DR: Air pollutants consist of a complex combination of gases and particulate matter, which is emitted directly into the atmosphere or formed in the atmosphere through gas-to-particle conversion (secondary) (Figure 1).
Abstract: Urban air pollution represents one of the greatest environmental challenges facing mankind in the 21st century. Noticeably, many developing countries, such as China and India, have experienced severe air pollution because of their fast-developing economy and urbanization. Globally, the urbanization trend is projected to continue: 70% of the world population will reside in urban centers by 2050, and there will exist 41 megacities (with more than 10 million inhabitants) by 2030. Air pollutants consist of a complex combination of gases and particulate matter (PM). In particular, fine PM (particles with the aerodynamic diameter smaller than 2.5 μm or PM_(2.5)) profoundly impacts human health, visibility, the ecosystem, the weather, and the climate, and these PM effects are largely dependent on the aerosol properties, including the number concentration, size, and chemical composition. PM is emitted directly into the atmosphere (primary) or formed in the atmosphere through gas-to-particle conversion (secondary) (Figure 1). Also, primary and secondary PM undergoes chemical and physical transformations and is subjected to transport, cloud processing, and removal from the atmosphere.

931 citations

Journal ArticleDOI
TL;DR: In this article, the role of epoxydiols of isoprene and methacryloylperoxynitrate (MPAN) in the formation of secondary organic aerosol (SOA) was identified.
Abstract: Isoprene is a significant source of atmospheric organic aerosol; however, the oxidation pathways that lead to secondary organic aerosol (SOA) have remained elusive. Here, we identify the role of two key reactive intermediates, epoxydiols of isoprene (IEPOX = β-IEPOX + δ-IEPOX) and methacryloylperoxynitrate (MPAN), which are formed during isoprene oxidation under low- and high-NOx conditions, respectively. Isoprene low-NOx SOA is enhanced in the presence of acidified sulfate seed aerosol (mass yield 28.6%) over that in the presence of neutral aerosol (mass yield 1.3%). Increased uptake of IEPOX by acid-catalyzed particle-phase reactions is shown to explain this enhancement. Under high-NOx conditions, isoprene SOA formation occurs through oxidation of its second-generation product, MPAN. The similarity of the composition of SOA formed from the photooxidation of MPAN to that formed from isoprene and methacrolein demonstrates the role of MPAN in the formation of isoprene high-NOx SOA. Reactions of IEPOX and MPAN in the presence of anthropogenic pollutants (i.e., acidic aerosol produced from the oxidation of SO2 and NO2, respectively) could be a substantial source of “missing urban SOA” not included in current atmospheric models.

754 citations