scispace - formally typeset
Search or ask a question
Author

Ariane L. Beck

Bio: Ariane L. Beck is an academic researcher from University of Texas at Austin. The author has contributed to research in topics: Avalanche photodiode & Quantum efficiency. The author has an hindex of 20, co-authored 43 publications receiving 1834 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the electrical and optical properties of photodiodes fabricated in GaN grown by metalorganic chemical vapor deposition have been investigated, and it is shown that small-area devices exhibit stable gain with no evidence of microplasmas.
Abstract: We report the electrical and optical characteristics of avalanche photodiodes fabricated in GaN grown by metalorganic chemical vapor deposition. The current–voltage characteristics indicate a multiplication of >25. Experiment indicates and simulation verifies that the magnitude of the electric field at the onset of avalanche gain is ⩾3 MV/cm. Small-area devices exhibit stable gain with no evidence of microplasmas.

727 citations

Journal ArticleDOI
TL;DR: A review of the recent progress in APD technology can be found in this paper, where the authors present a survey of the most recent developments in III-V compound avalanche photodiodes (APDs).
Abstract: The development of high-performance optical receivers has been a primary driving force for research on III-V compound avalanche photodiodes (APDs). The evolution of fiber optic systems toward higher bit rates has pushed APD performance toward higher bandwidths, lower noise, and higher gain-bandwidth products. Utilizing thin multiplication regions has reduced the excess noise. Further noise reduction has been demonstrated by incorporating new materials and impact ionization engineering with beneficially designed heterostructures. High gain-bandwidth products have been achieved waveguide structures. Recently, imaging and sensing applications have spurred interest in low noise APDs in the infrared and the UV as well as large area APDs and arrays. This paper reviews some of the recent progress in APD technology.

181 citations

Journal ArticleDOI
TL;DR: In this article, the improved detectivity of AlxGa1−xN-based solar-blind p-i-n photodiodes with high zero-bias external quantum efficiency was reported.
Abstract: We report the improved detectivity of AlxGa1−xN-based solar-blind p–i–n photodiodes with high zero-bias external quantum efficiency. The zero-bias external quantum efficiency was ∼42% at 269 nm, and increased to ∼46% at a reverse bias of −5 V. In addition, the photodiodes exhibited a low dark current density of 8.2×10−11 A/cm2 at a reverse bias of −5 V, which resulted in a large differential resistance. The high quantum efficiency and large differential resistance combine to yield a high detectivity of D*∼2.0×1014 cm Hz1/2 W−1. These results are attributed to the use of an Al0.6Ga0.4N window n region, which allows improved transmission to the absorption region, and to improved material quality.

130 citations

Journal ArticleDOI
01 Feb 2014-Energy
TL;DR: In this paper, the authors describe the experimental and data collection methods for a large-scale smart grid deployment in Austin, Texas, and provide results based on those data as well as a possible positive correlation between energy use and some rebates.

88 citations

Journal ArticleDOI
TL;DR: In this article, ultraviolet separate absorption and multiplication 4H-SiC avalanche photodiodes were shown to achieve an external quantum efficiency of 83% (187 mA/W) at 278 nm, corresponding to unity gain after reach-through was achieved.
Abstract: We report ultraviolet separate absorption and multiplication 4H-SiC avalanche photodiodes. An external quantum efficiency of 83% (187 mA/W) at 278 nm, corresponding to unity gain after reach-through was achieved. A gain higher than 1000 was demonstrated without edge breakdown.

70 citations


Cited by
More filters
Journal ArticleDOI
10 Jun 2009
TL;DR: The current performance and future demands of interconnects to and on silicon chips are examined and the requirements for optoelectronic and optical devices are project if optics is to solve the major problems of interConnects for future high-performance silicon chips.
Abstract: We examine the current performance and future demands of interconnects to and on silicon chips. We compare electrical and optical interconnects and project the requirements for optoelectronic and optical devices if optics is to solve the major problems of interconnects for future high-performance silicon chips. Optics has potential benefits in interconnect density, energy, and timing. The necessity of low interconnect energy imposes low limits especially on the energy of the optical output devices, with a ~ 10 fJ/bit device energy target emerging. Some optical modulators and radical laser approaches may meet this requirement. Low (e.g., a few femtofarads or less) photodetector capacitance is important. Very compact wavelength splitters are essential for connecting the information to fibers. Dense waveguides are necessary on-chip or on boards for guided wave optical approaches, especially if very high clock rates or dense wavelength-division multiplexing (WDM) is to be avoided. Free-space optics potentially can handle the necessary bandwidths even without fast clocks or WDM. With such technology, however, optics may enable the continued scaling of interconnect capacity required by future chips.

1,959 citations

Journal ArticleDOI
TL;DR: In this article, the authors summarized the major developments in Ge-on-Si photodetectors, including epitaxial growth and strain engineering, free-space and waveguide-integrated devices, as well as recent progress in Geon-On-Si avalanche photodets.
Abstract: The past decade has seen rapid progress in research into high-performance Ge-on-Si photodetectors. Owing to their excellent optoelectronic properties, which include high responsivity from visible to near-infrared wavelengths, high bandwidths and compatibility with silicon complementary metal–oxide–semiconductor circuits, these devices can be monolithically integrated with silicon-based read-out circuits for applications such as high-performance photonic data links and infrared imaging at low cost and low power consumption. This Review summarizes the major developments in Ge-on-Si photodetectors, including epitaxial growth and strain engineering, free-space and waveguide-integrated devices, as well as recent progress in Ge-on-Si avalanche photodetectors. Owing to their excellent optoelectronic properties, Ge-on-Si photodetector can be monolithically integrated with silicon-based read-out circuits for applications such as high-performance photonic data links and low-cost infrared imaging at low power consumption. This Review covers the major developments in Ge-on-Si photodetectors, including epitaxial growth and strain engineering, free-space and waveguide-integrated devices, as well as recent progress in Ge-on-Si avalanche photodetectors.

1,259 citations

Journal ArticleDOI
TL;DR: In this paper, a general review of the advances in widebandgap semiconductor photodetectors is presented, including SiC, diamond, III-nitrides and ZnS.
Abstract: Industries such as the automotive, aerospace or military, as well as environmental and biological research have promoted the development of ultraviolet (UV) photodetectors capable of operating at high temperatures and in hostile environments. UV-enhanced Si photodiodes are hence giving way to a new generation of UV detectors fabricated from wide-bandgap semiconductors, such as SiC, diamond, III-nitrides, ZnS, ZnO, or ZnSe. This paper provides a general review of latest progresses in wide-bandgap semiconductor photodetectors.

1,194 citations

Journal ArticleDOI
TL;DR: In this paper, the electrical and optical properties of photodiodes fabricated in GaN grown by metalorganic chemical vapor deposition have been investigated, and it is shown that small-area devices exhibit stable gain with no evidence of microplasmas.
Abstract: We report the electrical and optical characteristics of avalanche photodiodes fabricated in GaN grown by metalorganic chemical vapor deposition. The current–voltage characteristics indicate a multiplication of >25. Experiment indicates and simulation verifies that the magnitude of the electric field at the onset of avalanche gain is ⩾3 MV/cm. Small-area devices exhibit stable gain with no evidence of microplasmas.

727 citations

Journal ArticleDOI
TL;DR: It is the hope that this Review will inspire more interesting, robust, multi-method, comparative, interdisciplinary and impactful research that will accelerate the contribution that energy social science can make to both theory and practice.
Abstract: A series of weaknesses in creativity, research design, and quality of writing continue to handicap energy social science. Many studies ask uninteresting research questions, make only marginal contributions, and lack innovative methods or application to theory. Many studies also have no explicit research design, lack rigor, or suffer from mangled structure and poor quality of writing. To help remedy these shortcomings, this Review offers suggestions for how to construct research questions; thoughtfully engage with concepts; state objectives; and appropriately select research methods. Then, the Review offers suggestions for enhancing theoretical, methodological, and empirical novelty. In terms of rigor, codes of practice are presented across seven method categories: experiments, literature reviews, data collection, data analysis, quantitative energy modeling, qualitative analysis, and case studies. We also recommend that researchers beware of hierarchies of evidence utilized in some disciplines, and that researchers place more emphasis on balance and appropriateness in research design. In terms of style, we offer tips regarding macro and microstructure and analysis, as well as coherent writing. Our hope is that this Review will inspire more interesting, robust, multi-method, comparative, interdisciplinary and impactful research that will accelerate the contribution that energy social science can make to both theory and practice.

670 citations