scispace - formally typeset
Search or ask a question
Author

Ariel Jackson

Bio: Ariel Jackson is an academic researcher from Stanford University. The author has contributed to research in topics: Catalysis & Electrochemical cell. The author has an hindex of 15, co-authored 25 publications receiving 5765 citations. Previous affiliations of Ariel Jackson include Massachusetts Institute of Technology & SLAC National Accelerator Laboratory.

Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that anodes consisting of an active silicon nanotube surrounded by an ion-permeable silicon oxide shell can cycle over 6,000 times in half cells while retaining more than 85% of their initial capacity.
Abstract: Although the performance of lithium ion-batteries continues to improve, their energy density and cycle life remain insufficient for applications in consumer electronics, transport and large-scale renewable energy storage. Silicon has a large charge storage capacity and this makes it an attractive anode material, but pulverization during cycling and an unstable solid-electrolyte interphase has limited the cycle life of silicon anodes to hundreds of cycles. Here, we show that anodes consisting of an active silicon nanotube surrounded by an ion-permeable silicon oxide shell can cycle over 6,000 times in half cells while retaining more than 85% of their initial capacity. The outer surface of the silicon nanotube is prevented from expansion by the oxide shell, and the expanding inner surface is not exposed to the electrolyte, resulting in a stable solid-electrolyte interphase. Batteries containing these double-walled silicon nanotube anodes exhibit charge capacities approximately eight times larger than conventional carbon anodes and charging rates of up to 20C (a rate of 1C corresponds to complete charge or discharge in one hour).

2,133 citations

Journal ArticleDOI
TL;DR: In this article, the synthesis of a graphene-sulfur composite material by wrapping poly(ethylene glycol) (PEG) coated submicrometer sulfur particles with mildly oxidized graphene oxide sheets decorated by carbon black nanoparticles was reported.
Abstract: We report the synthesis of a graphene–sulfur composite material by wrapping poly(ethylene glycol) (PEG) coated submicrometer sulfur particles with mildly oxidized graphene oxide sheets decorated by carbon black nanoparticles. The PEG and graphene coating layers are important to accommodating volume expansion of the coated sulfur particles during discharge, trapping soluble polysulfide intermediates, and rendering the sulfur particles electrically conducting. The resulting graphene–sulfur composite showed high and stable specific capacities up to ∼600 mAh/g over more than 100 cycles, representing a promising cathode material for rechargeable lithium batteries with high energy density.

2,013 citations

Journal ArticleDOI
TL;DR: Li et al. as discussed by the authors reported a novel lithium metal-free battery consisting of a Li(2)S/mesoporous carbon composite cathode and a silicon nanowire anode.
Abstract: Rechargeable lithium ion batteries are important energy storage devices; however, the specific energy of existing lithium ion batteries is still insufficient for many applications due to the limited specific charge capacity of the electrode materials. The recent development of sulfur/mesoporous carbon nanocomposite cathodes represents a particularly exciting advance, but in full battery cells, sulfur-based cathodes have to be paired with metallic lithium anodes as the lithium source, which can result in serious safety issues. Here we report a novel lithium metal-free battery consisting of a Li(2)S/mesoporous carbon composite cathode and a silicon nanowire anode. This new battery yields a theoretical specific energy of 1550 Wh kg(-1), which is four times that of the theoretical specific energy of existing lithium-ion batteries based on LiCoO(2) cathodes and graphite anodes (approximately 410 Wh kg(-1)). The nanostructured design of both electrodes assists in overcoming the issues associated with using sulfur compounds and silicon in lithium-ion batteries, including poor electrical conductivity, significant structural changes, and volume expansion. We have experimentally realized an initial discharge specific energy of 630 Wh kg(-1) based on the mass of the active electrode materials.

623 citations

Journal ArticleDOI
Nian Liu1, Liangbing Hu1, Matthew T. McDowell1, Ariel Jackson1, Yi Cui1 
01 Jul 2011-ACS Nano
TL;DR: This work presents a method for prelithiating a silicon nanowire (SiNW) anode by a facile self-discharge mechanism, and provides a protocol for pairing lithium-free electrodes to make the next-generation high-energy LIB.
Abstract: Silicon is one of the most promising anode materials for the next-generation high-energy lithium ion battery (LIB), while sulfur and some other lithium-free materials have recently shown high promise as cathode materials. To make a full battery out of them, either the cathode or the anode needs to be prelithiated. Here, we present a method for prelithiating a silicon nanowire (SiNW) anode by a facile self-discharge mechanism. Through a time dependence study, we found that 20 min of prelithiation loads ∼50% of the full capacity into the SiNWs. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) studies show that the nanostructure of SiNWs is maintained after prelithiation. We constructed a full battery using our prelithiated SiNW anode with a sulfur cathode. Our work provides a protocol for pairing lithium-free electrodes to make the next-generation high-energy LIB.

480 citations

Journal ArticleDOI
TL;DR: It was found that crystalline Li(2)S does not form at the end of discharge for all sulfur cathodes studied, and during cycling the bulk of soluble polysulfides remains trapped within the cathode matrix.
Abstract: Rechargeable lithium–sulfur (Li–S) batteries hold great potential for high-performance energy storage systems because they have a high theoretical specific energy, low cost, and are eco-friendly. However, the structural and morphological changes during electrochemical reactions are still not well understood. In this Article, these changes in Li–S batteries are studied in operando by X-ray diffraction and transmission X-ray microscopy. We show recrystallization of sulfur by the end of the charge cycle is dependent on the preparation technique of the sulfur cathode. On the other hand, it was found that crystalline Li2S does not form at the end of discharge for all sulfur cathodes studied. Furthermore, during cycling the bulk of soluble polysulfides remains trapped within the cathode matrix. Our results differ from previous ex situ results. This highlights the importance of in operando studies and suggests possible strategies to improve cycle life.

471 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The energy that can be stored in Li-air and Li-S cells is compared with Li-ion; the operation of the cells is discussed, as are the significant hurdles that will have to be overcome if such batteries are to succeed.
Abstract: Li-ion batteries have transformed portable electronics and will play a key role in the electrification of transport. However, the highest energy storage possible for Li-ion batteries is insufficient for the long-term needs of society, for example, extended-range electric vehicles. To go beyond the horizon of Li-ion batteries is a formidable challenge; there are few options. Here we consider two: Li-air (O(2)) and Li-S. The energy that can be stored in Li-air (based on aqueous or non-aqueous electrolytes) and Li-S cells is compared with Li-ion; the operation of the cells is discussed, as are the significant hurdles that will have to be overcome if such batteries are to succeed. Fundamental scientific advances in understanding the reactions occurring in the cells as well as new materials are key to overcoming these obstacles. The potential benefits of Li-air and Li-S justify the continued research effort that will be needed.

7,895 citations

Journal ArticleDOI
TL;DR: Li-ion battery technology has become very important in recent years as these batteries show great promise as power sources that can lead us to the electric vehicle (EV) revolution as mentioned in this paper.
Abstract: Li-ion battery technology has become very important in recent years as these batteries show great promise as power sources that can lead us to the electric vehicle (EV) revolution. The development of new materials for Li-ion batteries is the focus of research in prominent groups in the field of materials science throughout the world. Li-ion batteries can be considered to be the most impressive success story of modern electrochemistry in the last two decades. They power most of today's portable devices, and seem to overcome the psychological barriers against the use of such high energy density devices on a larger scale for more demanding applications, such as EV. Since this field is advancing rapidly and attracting an increasing number of researchers, it is important to provide current and timely updates of this constantly changing technology. In this review, we describe the key aspects of Li-ion batteries: the basic science behind their operation, the most relevant components, anodes, cathodes, electrolyte solutions, as well as important future directions for R&D of advanced Li-ion batteries for demanding use, such as EV and load-leveling applications.

5,531 citations

Journal ArticleDOI

3,654 citations

Journal ArticleDOI
TL;DR: The unique advances on ultrathin 2D nanomaterials are introduced, followed by the description of their composition and crystal structures, and the assortments of their synthetic methods are summarized.
Abstract: Since the discovery of mechanically exfoliated graphene in 2004, research on ultrathin two-dimensional (2D) nanomaterials has grown exponentially in the fields of condensed matter physics, material science, chemistry, and nanotechnology. Highlighting their compelling physical, chemical, electronic, and optical properties, as well as their various potential applications, in this Review, we summarize the state-of-art progress on the ultrathin 2D nanomaterials with a particular emphasis on their recent advances. First, we introduce the unique advances on ultrathin 2D nanomaterials, followed by the description of their composition and crystal structures. The assortments of their synthetic methods are then summarized, including insights on their advantages and limitations, alongside some recommendations on suitable characterization techniques. We also discuss in detail the utilization of these ultrathin 2D nanomaterials for wide ranges of potential applications among the electronics/optoelectronics, electrocat...

3,628 citations

Journal ArticleDOI
TL;DR: A review of post-lithium-ion batteries is presented in this paper with a focus on their operating principles, advantages and the challenges that they face, and the volumetric energy density of each battery is examined using a commercial pouch-cell configuration.
Abstract: Energy density is the main property of rechargeable batteries that has driven the entire technology forward in past decades. Lithium-ion batteries (LIBs) now surpass other, previously competitive battery types (for example, lead–acid and nickel metal hydride) but still require extensive further improvement to, in particular, extend the operation hours of mobile IT devices and the driving mileages of all-electric vehicles. In this Review, we present a critical overview of a wide range of post-LIB materials and systems that could have a pivotal role in meeting such demands. We divide battery systems into two categories: near-term and long-term technologies. To provide a realistic and balanced perspective, we describe the operating principles and remaining issues of each post-LIB technology, and also evaluate these materials under commercial cell configurations. Post-lithium-ion batteries are reviewed with a focus on their operating principles, advantages and the challenges that they face. The volumetric energy density of each battery is examined using a commercial pouch-cell configuration to evaluate its practical significance and identify appropriate research directions.

3,314 citations