scispace - formally typeset
Search or ask a question
Author

Arif Khan

Other affiliations: University of Nizwa
Bio: Arif Khan is an academic researcher from Nord University. The author has contributed to research in topics: Genome & Phylogenetic tree. The author has an hindex of 6, co-authored 8 publications receiving 48 citations. Previous affiliations of Arif Khan include University of Nizwa.

Papers
More filters
Journal ArticleDOI
TL;DR: The first complete genome sequences, 72 shared genes, matK gene, and rbcL gene from related species generated the same phylogenetic signals, and phylogenetic analysis revealed that P. ovata formed a single clade with P. maritima and P. media about 11.0 million years ago.
Abstract: Plantago ovata (Plantaginaceae) is an economically and medicinally important species, however, least is known about its genomics and evolution. Here, we report the first complete plastome genome of P. ovata and comparison with previously published genomes of related species from Plantaginaceae. The results revealed that P. ovata plastome size was 162,116 bp and that it had typical quadripartite structure containing a large single copy region of 82,084 bp and small single copy region of 5,272 bp. The genome has a markedly higher inverted repeat (IR) size of 37.4 kb, suggesting large-scale inversion of 13.8 kb within the expanded IR regions. In addition, the P. ovata plastome contains 149 different genes, including 43 tRNA, 8 rRNA, and 98 protein-coding genes. The analysis revealed 139 microsatellites, of which 71 were in the non-coding regions. Approximately 32 forward, 34 tandem, and 17 palindromic repeats were detected. The complete genome sequences, 72 shared genes, matK gene, and rbcL gene from related species generated the same phylogenetic signals, and phylogenetic analysis revealed that P. ovata formed a single clade with P. maritima and P. media. The divergence time estimation as employed in BEAST revealed that P. ovata diverged from P. maritima and P. media about 11.0 million years ago (Mya; 95% highest posterior density, 10.06–12.25 Mya). In conclusion, P. ovata had significant variation in the IR region, suggesting a more stable P. ovata plastome genome than that of other Plantaginaceae species.

37 citations

Journal ArticleDOI
TL;DR: The phylogenetic analysis showed that P. juliflora is closer to P. cineraria than P. glandulosa, however some divergence in the intergenic spacers of A. microsperma and Parkia javanica were observed.
Abstract: Genus Prosopis (family Fabaceae) are shrubby trees, native to arid and semi-arid regions of Asia, Africa, and America and known for nitrogen fixation. Here, we have sequenced the complete chloroplast (cp) genomes of two Prosopis species (P. juliflora and P. cineraria) and compared them with previously sequenced P. glandulosa, Adenanthera microsperma, and Parkia javanica belonging to the same family. The complete genome sequences of Prosopis species and related species ranged from 159,389 bp (A. microsperma) to 163,677 bp (P. cineraria). The overall GC contents of the genomes were almost the similar (35.9-36.6%). The P. juliflora and P. cineraria genomes encoded 132 and 131 genes, respectively, whereas both the species comprised of 85 protein-coding genes higher than other compared species. About 140, 134, and 129 repeats were identified in P. juliflora, P. cineraria and P. glandulosa cp genomes, respectively. Similarly, the maximum number of simple sequence repeats were determined in P. juliflora (88), P. cineraria (84), and P. glandulosa (78). Moreover, complete cp genome comparison determined a high degree of sequence similarity among P. juliflora, P. cineraria, and P. glandulosa, however some divergence in the intergenic spacers of A. microsperma and Parkia javanica were observed. The phylogenetic analysis showed that P. juliflora is closer to P. cineraria than P. glandulosa.

20 citations

Journal ArticleDOI
TL;DR: The docking results suggest that the new sesquiterpene forms strong interactions at the catalytic site of yeast α-glucosidase, particularly hydrogen bonded to the Asp68, Asp349, Arg439 and two water molecules.

15 citations

Journal ArticleDOI
05 Feb 2020
TL;DR: The results revealed that the cp genomes had similar quadripartite structure, gene content, and genome organization with previously reported genomes from the same family, and sequence comparison revealed that highly divergent regions in rpoC1, rpocB, yCF3, clpP, petD, ycf1, and ndhF of thecp genomes might provide better understanding of phylogenetic inferences in the Euphorbiaceae and order Malpighiales.
Abstract: Euphorbia is one of the largest genera in the Euphorbiaceae family, comprising 2000 species possessing commercial, medicinal, and ornamental importance. However, there are very little data available on their molecular phylogeny and genomics, and uncertainties still exist at a taxonomic level. Herein, we sequence the complete chloroplast (cp) genomes of two species, E. larica and E. smithii, of the genus Euphorbia through next-generation sequencing and perform a comparative analysis with nine related genomes in the family. The results revealed that the cp genomes had similar quadripartite structure, gene content, and genome organization with previously reported genomes from the same family. The size of cp genomes ranged from 162,172 to 162,358 bp with 132 and 133 genes, 8 rRNAs, 39 tRNA in E. smithii and E. larica, respectively. The numbers of protein-coding genes were 85 and 86, with each containing 19 introns. The four-junction regions were studied and results reveal that rps19 was present at JLB (large single copy region and inverted repeat b junction) in E. larica where its complete presence was located in the IRb (inverted repeat b) region in E. smithii. The sequence comparison revealed that highly divergent regions in rpoC1, rpocB, ycf3, clpP, petD, ycf1, and ndhF of the cp genomes might provide better understanding of phylogenetic inferences in the Euphorbiaceae and order Malpighiales. Phylogenetic analyses of this study illustrate sister clades of E. smithii with E. tricullii and these species form a monophyletic clade with E. larica. The current study might help us to understand the genome architecture, genetic diversity among populations, and evolutionary depiction in the genera.

14 citations

Journal ArticleDOI
09 Jul 2019-PeerJ
TL;DR: The current study provides valuable genomic insight into the genus Teucrium and its subspecies that may be applied to a more comprehensive study.
Abstract: Teucrium is one of the most economically and ecologically important genera in the Lamiaceae family; however, it is currently the least well understood at the plastome level. In the current study, we sequenced the complete chloroplast (cp) genomes of T. stocksianum subsp. stenophyllum R.A.King (TSS), T. stocksianum subsp. stocksianum Boiss. (TS) and T. mascatense Boiss. (TM) through next-generation sequencing and compared them with the cp genomes of related species in Lamiaceae (Ajuga reptans L., Caryopteris mongholica Bunge, Lamium album L., Lamium galeobdolon (L.) Crantz, and Stachys byzantina K.Koch). The results revealed that the TSS, TS and TM cp genomes have sizes of 150,087, 150,076 and 150,499 bp, respectively. Similarly, the large single-copy (LSC) regions of TSS, TS and TM had sizes of 81,707, 81,682 and 82,075 bp, respectively. The gene contents and orders of these genomes were similar to those of other angiosperm species. However, various differences were observed at the inverted repeat (IR) junctions, and the extent of the IR expansion into ψrps19 was 58 bp, 23 bp and 61 bp in TSS, TS and TM, respectively. Similarly, in all genomes, the pbsA gene was present in the LSC at varying distances from the JLA (IRa-LSC) junction. Furthermore, 89, 72, and 92 repeats were identified in the TSS, TM and TS cp genomes, respectively. The highest number of simple sequence repeats was found in TSS (128), followed by TS (127) and TM (121). Pairwise alignments of the TSS cp genome with related cp genomes showed a high degree of synteny. However, relatively lower sequence identity was observed when various coding regions were compared to those of related cp genomes. The average pairwise divergence among the complete cp genomes showed that TSS was more divergent from TM (0.018) than from TS (0.006). The current study provides valuable genomic insight into the genus Teucrium and its subspecies that may be applied to a more comprehensive study.

13 citations


Cited by
More filters
20 Jan 2006
TL;DR: The chloroplast genome of Pelargonium e hortorum has been completely sequenced as mentioned in this paper, and it is shown to contain two copies of a greatly expanded inverted repeat of 75,741 bp each, and consequently diminished single copy regions of 59,710 bp and 6,750 bp.
Abstract: The chloroplast genome of Pelargonium e hortorum has beencompletely sequenced. It maps as a circular molecule of 217,942 bp, andis both the largest and most rearranged land plant chloroplast genome yetsequenced. It features two copies of a greatly expanded inverted repeat(IR) of 75,741 bp each, and consequently diminished single copy regionsof 59,710 bp and 6,750 bp. It also contains two different associations ofrepeated elements that contribute about 10 percent to the overall sizeand account for the majority of repeats found in the genome. Theyrepresent hotspots for rearrangements and gene duplications and include alarge number of pseudogenes. We propose simple models that account forthe major rearrangements with a minimum of eight IR boundary changes and12 inversions in addition to a several insertions of duplicated sequence.The major processes at work (duplication, IR expansion, and inversion)have disrupted at least one and possibly two or three transcriptionaloperons, and the genes involved in these disruptions form the core of thetwo major repeat associations. Despite the vast increase in size andcomplexity of the genome, the gene content is similar to that of otherangiosperms, with the exceptions of a large number of pseudogenes as partof the repeat associations, the recognition of two open reading frames(ORF56 and ORF42) more » in the trnA intron with similarities to previouslyidentified mitochondrial products (ACRS and pvs-trnA), the loss of accDand trnT-GGU, and in particular, the lack of a recognizably functionalrpoA. One or all of three similar open reading frames may possibly encodethe latter, however. « less

339 citations

Journal ArticleDOI
TL;DR: In this paper, the anti-diabetic potential through alpha-glucosidase inhibition of plant-derived molecules is summarized and eight molecules (Taxumariene F, Akebonoic acid, Morusin, Rhaponticin, Procyanidin A2, Alaternin, Mulberrofuran K and Psoralidin) were selected as promising drug candidates and their pharmacokinetic properties and toxicity were discussed where available.
Abstract: Diabetes mellitus is a multifactorial global health disorder that is rising at an alarming rate. Cardiovascular diseases, kidney damage and neuropathy are the main cause of high mortality rates among individuals with diabetes. One effective therapeutic approach for controlling hyperglycemia associated with type-2 diabetes is to target alpha-amylase and alpha-glucosidase, enzymes that catalyzes starch hydrolysis in the intestine. At present, approved inhibitors for these enzymes are restricted to acarbose, miglitol and voglibose. Although these inhibitors retard glucose absorption, undesirable gastrointestinal side effects impede their application. Therefore, research efforts continue to seek novel inhibitors with improved efficacy and minimal side effects. Natural products of plant origin have been a valuable source of therapeutic agents with lesser toxicity and side effects. The anti-diabetic potential through alpha-glucosidase inhibition of plant-derived molecules are summarized in this review. Eight molecules (Taxumariene F, Akebonoic acid, Morusin, Rhaponticin, Procyanidin A2, Alaternin, Mulberrofuran K and Psoralidin) were selected as promising drug candidates and their pharmacokinetic properties and toxicity were discussed where available.

72 citations

Journal ArticleDOI
TL;DR: The molecular docking studies of the active compounds were performed to examine their mode of inhibition in the binding site of the α-glucosidase enzyme, and confirmed compound 7 to be the most active against α- glucosodase enzyme.
Abstract: Bioassay guided isolation of the methanolic extract of marine macro brown alga Dictyopteris hoytii afforded one new metabolite (ethyl methyl 2-bromobenzene 1,4-dioate, 1), one new natural metabolite (diethyl-2-bromobenzene 1,4-dioate, 2) along with six known metabolites (3–8) reported for the first time from this source. The structure elucidation of all these compounds was achieved by extensive spectroscopic techniques including 1D (1H and 13C) and 2D (NOESY, COSY, HMBC and HSQC) NMR and mass spectrometry and comparison of the spectral data of known compounds with those reported in literature. The in vitro α-glucosidase inhibition studies confirmed compound 7 to be the most active against α-glucosidase enzyme with IC50 value of 30.5 ± 0.41 μM. Compounds 2 and 3 demonstrated good inhibition with IC50 values of 234.2 ± 4.18 and 289.4 ± 4.91 μM, respectively, while compounds 1, 5, and 6 showed moderate to low inhibition. Furthermore, the molecular docking studies of the active compounds were performed to examine their mode of inhibition in the binding site of the α-glucosidase enzyme.

38 citations

Journal ArticleDOI
TL;DR: In this study, Corydalis is revealed to be another unusual lineage with extensive large-scale plastome rearrangements and elevated GC content in both gene and intergenic regions and high number of dispersed repeats.
Abstract: The chloroplast genome (plastome) of angiosperms (particularly photosynthetic members) is generally highly conserved, although structural rearrangements have been reported in a few lineages. In this study, we revealed Corydalis to be another unusual lineage with extensive large-scale plastome rearrangements. In the four newly sequenced Corydalis plastomes that represent all the three subgenera of Corydalis, we detected (1) two independent relocations of the same five genes (trnV-UAC-rbcL) from the typically posterior part of the large single-copy (LSC) region to the front, downstream of either the atpH gene in Corydalis saxicola or the trnK-UUU gene in both Corydalis davidii and Corydalis hsiaowutaishanensis; (2) relocation of the rps16 gene from the LSC region to the inverted repeat (IR) region in Corydalis adunca; (3) uniform inversion of an 11-14 kb segment (ndhB-trnR-ACG) in the IR region of all the four Corydalis species (the same below); (4) expansions (>10 kb) of IR into the small single-copy (SSC) region and corresponding contractions of SSC region; and (5) extensive pseudogenizations or losses of 13 genes (accD, clpP, and 11 ndh genes). In addition, we also found that the four Corydalis plastomes exhibited elevated GC content in both gene and intergenic regions and high number of dispersed repeats. Phylogenomic analyses generated a well-supported topology that was consistent with the result of previous studies based on a few DNA markers but contradicted with the morphological character-based taxonomy to some extent. This study provided insights into the evolution of plastomes throughout the three Corydalis subgenera and will be of value for further study on taxonomy, phylogeny, and evolution of Corydalis.

28 citations