scispace - formally typeset
Search or ask a question
Author

Aris Tsangrassoulis

Bio: Aris Tsangrassoulis is an academic researcher from University of Thessaly. The author has contributed to research in topics: Daylight & Daylighting. The author has an hindex of 23, co-authored 66 publications receiving 2887 citations. Previous affiliations of Aris Tsangrassoulis include National and Kapodistrian University of Athens.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the analysis of the thermal properties and energy performance of the green roof was carried out in two phases: during the first phase, extended surface and air temperature measurements were taken at the indoor and outdoor environment of the buildings where the green roofs had installed and during the second phase of the study, the thermal and energy saving were examined, through a mathematical approach.

630 citations

Journal ArticleDOI
TL;DR: This paper is a review of the methods and tools used for the building design optimization in an effort to explore the reasoning behind their selection, to present their abilities and performance issues and to identify the key characteristics of their future versions.
Abstract: Building design is quite a complicated task with the design team trying to counterbalance various antagonistic parameters, which in turn are subject to various constraints. Due to this complexity, performance simulation tools are employed and as a consequence, optimization methods have just started being used, mainly as a decision aid. There are examples, amongst the architectural community, where probabilistic evolutionary algorithms or other derivative-free methods have been used with various decision variables and objective goals. This paper is a review of the methods and tools used for the building design optimization in an effort to explore the reasoning behind their selection, to present their abilities and performance issues and to identify the key characteristics of their future versions.

412 citations

Journal ArticleDOI
TL;DR: In this paper, the impact of climate changes on the urban environment may be assessed by calculating the modifications in energy production and consumption for such daily operations as heating and cooling in the southeastern Mediterranean (the area of Greece) were simulated for the year 2030.

213 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a literature review of various parameters influencing the effectiveness of occupant controlled natural ventilation and discuss possibilities to implement these influences into calculation procedures/building simulation and adaptive thermal comfort evaluation.
Abstract: According to IPCC (Intergovernmental Panel on Climate Change), the largest use of energy in commercial buildings is space heating in colder climates and air conditioning in hot climates. In Europe, the Directive on the energy performance of buildings EPBD (European Energy Performance of Buildings Directive) [1] provides a framework for national building performance regulations and calculation procedures. However, there are often large discrepancies between calculated and measured energy performance of buildings. One main reason is the behaviour of occupants, which is often not reflected in calculation models. This paper presents a literature review of various parameters influencing the effectiveness of occupant controlled natural ventilation. Additionally possibilities to implement these influences into calculation procedures/building simulation and adaptive thermal comfort evaluation are discussed.

182 citations

Journal ArticleDOI
TL;DR: In this paper, a neural network approach is used for modelling and estimating the energy consumption time series for a residential building in Athens, using as inputs several climatic parameters, such as ambient air temperature and total solar radiation.

145 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors provide an up-to-date review of the various modeling techniques used for modeling residential sector energy consumption, focusing on the strengths, shortcomings and purposes.
Abstract: There is a growing interest in reducing energy consumption and the associated greenhouse gas emissions in every sector of the economy. The residential sector is a substantial consumer of energy in every country, and therefore a focus for energy consumption efforts. Since the energy consumption characteristics of the residential sector are complex and inter-related, comprehensive models are needed to assess the technoeconomic impacts of adopting energy efficiency and renewable energy technologies suitable for residential applications. The aim of this paper is to provide an up-to-date review of the various modeling techniques used for modeling residential sector energy consumption. Two distinct approaches are identified: top-down and bottom-up. The top-down approach treats the residential sector as an energy sink and is not concerned with individual end-uses. It utilizes historic aggregate energy values and regresses the energy consumption of the housing stock as a function of top-level variables such as macroeconomic indicators (e.g. gross domestic product, unemployment, and inflation), energy price, and general climate. The bottom-up approach extrapolates the estimated energy consumption of a representative set of individual houses to regional and national levels, and consists of two distinct methodologies: the statistical method and the engineering method. Each technique relies on different levels of input information, different calculation or simulation techniques, and provides results with different applicability. A critical review of each technique, focusing on the strengths, shortcomings and purposes, is provided along with a review of models reported in the literature.

1,748 citations

Journal ArticleDOI
TL;DR: In this paper, the authors explore the important role that the green infrastructure of a city can play in adapting for climate change and present output from energy exchange and hydrological models showing surface temperature and surface runoff in relation to green infrastructure under current and future climate scenarios.
Abstract: The urban environment has distinctive biophysical features in relation to surrounding rural areas. These include an altered energy exchange creating an urban heat island, and changes to hydrology such as increased surface runoff of rainwater. Such changes are, in part, a result of the altered surface cover of the urban area. For example less vegetated surfaces lead to a decrease in evaporative cooling, whilst an increase in surface sealing results in increased surface runoff. Climate change will amplify these distinctive features. This paper explores the important role that the green infrastructure, i.e. the greenspace network, of a city can play in adapting for climate change. It uses the conurbation of Greater Manchester as a case study site. The paper presents output from energy exchange and hydrological models showing surface temperature and surface runoff in relation to the green infrastructure under current and future climate scenarios. The implications for an adaptation strategy to climate change in the urban environment are discussed.

1,520 citations

Journal ArticleDOI
TL;DR: Transparent conductors (TCs) have a multitude of applications for solar energy utilization and for energy savings, especially in buildings as discussed by the authors, which leads naturally to considerations of spectral selectivity, angular selectivity, and temporal variability of TCs, as covered in three subsequent sections.

1,471 citations

Journal ArticleDOI
TL;DR: In this article, the status and current trends of energy consumption, CO2 emissions and energy policies in the residential sector, both globally and in those ten countries, were reviewed, and it was found that global residential energy consumption grew by 14% from 2000 to 2011, where population, urbanization and economic growth have been the main driving factors.
Abstract: Climate change and global warming as the main human societies’ threats are fundamentally associated with energy consumption and GHG emissions. The residential sector, representing 27% and 17% of global energy consumption and CO2 emissions, respectively, has a considerable role to mitigate global climate change. Ten countries, including China, the US, India, Russia, Japan, Germany, South Korea, Canada, Iran, and the UK, account for two-thirds of global CO2 emissions. Thus, these countries’ residential energy consumption and GHG emissions have direct, significant effects on the world environment. The aim of this paper is to review the status and current trends of energy consumption, CO2 emissions and energy policies in the residential sector, both globally and in those ten countries. It was found that global residential energy consumption grew by 14% from 2000 to 2011. Most of this increase has occurred in developing countries, where population, urbanization and economic growth have been the main driving factors. Among the ten studied countries, all of the developed ones have shown a promising trend of reduction in CO2 emissions, apart from the US and Japan, which showed a 4% rise. Globally, the residential energy market is dominated by traditional biomass (40% of the total) followed by electricity (21%) and natural gas (20%), but the total proportion of fossil fuels has decreased over the past decade. Energy policy plays a significant role in controlling energy consumption. Different energy policies, such as building energy codes, incentives, energy labels have been employed by countries. Those policies can be successful if they are enhanced by making them mandatory, targeting net-zero energy building, and increasing public awareness about new technologies. However, developing countries, such as China, India and Iran, still encounter with considerable growth in GHG emissions and energy consumption, which are mostly related to the absence of strong, efficient policy.

1,212 citations

Journal ArticleDOI
TL;DR: In this article, the authors present the state of the art on both the above technologies, when applied in the city scale, and present the definition of the limits, the boundaries and the conditions under which the considered technologies reach their better performance in a synthetic way.

1,204 citations