scispace - formally typeset
Search or ask a question
Author

Aristos Aristidou

Bio: Aristos Aristidou is an academic researcher from Cargill. The author has contributed to research in topics: Yeast & Fermentation. The author has an hindex of 28, co-authored 74 publications receiving 3678 citations. Previous affiliations of Aristos Aristidou include VTT Technical Research Centre of Finland & Rice University.


Papers
More filters
Book
16 Oct 1998
TL;DR: The Essence of Metabolic Engineering, a review of Cellular Metabolism, and Examples of Pathway Manipulations: Metabolic engineering in Practice are reviewed.
Abstract: The Essence of Metabolic Engineering Review of Cellular Metabolism Comprehensive Models for Cellular Reactions Material Balances and Data Consistency Regulation of Metabolic Pathways Examples of Pathway Manipulations: Metabolic Engineering in Practice Metabolic Pathway Synthesis Metabolic Flux Analysis Methods for the Experimental Determination of Metabolic Fluxes by Isotope Labeling Applications of Metabolic Flux Analysis Metabolic Control Analysis Analysis of Structure of Metabolic Networks Flux Analysis of Metabolic Networks Thermodynamics of Cellular Processes Glossary Subject Index

1,125 citations

Journal ArticleDOI
TL;DR: The conversion of both cellulose and hemicellulose for the production of fuel ethanol is being studied intensively, with a view to developing a technically and economically viable bioprocess.

492 citations

Journal ArticleDOI
TL;DR: Intracellular metabolite analyses and in vitro enzyme activities suggest that the control of flux in a strain that overexpresses XKS1 has shifted to the nonoxidative steps of the pentose phosphate pathway (i.e., downstream of xylose 5-phosphate), and enzymatic steps in the lower part of glycolysis and ethanol formation pathways do not have a high flux control in this recombinant strain.

257 citations

Journal ArticleDOI
TL;DR: The ultimate aim of this review is to provide metabolic engineers with an overview of recent advances in complementary aspects of regulation at the gene, protein, and metabolite level and those involved in fundamental research with potential hurdles in the path to implementing their discoveries in practical applications.
Abstract: The importance of regulatory control in metabolic processes is widely acknowledged, and several enquiries (both local and global) are being made in understanding regulation at various levels of the metabolic hierarchy. The wealth of biological information has enabled identifying the individual components (genes, proteins, and metabolites) of a biological system, and we are now in a position to understand the interactions between these components. Since phenotype is the net result of these interactions, it is immensely important to elucidate them not only for an integrated understanding of physiology, but also for practical applications of using biological systems as cell factories. We present some of the recent “-omics” approaches that have expanded our understanding of regulation at the gene, protein, and metabolite level, followed by analysis of the impact of this progress on the advancement of metabolic engineering. Although this review is by no means exhaustive, we attempt to convey our ideology that combining global information from various levels of metabolic hierarchy is absolutely essential in understanding and subsequently predicting the relationship between changes in gene expression and the resulting phenotype. The ultimate aim of this review is to provide metabolic engineers with an overview of recent advances in complementary aspects of regulation at the gene, protein, and metabolite level and those involved in fundamental research with potential hurdles in the path to implementing their discoveries in practical applications.

127 citations

Journal ArticleDOI
TL;DR: Comparative fermentation studies show that the reduction in acetate accumulation leads to a significant improvement of recombinant protein production, which represents a 220% enhancement over the control strain.
Abstract: Genetic and metabolic engineering provide powerful and effective tools for the systematic manipulation and fine tuning of cellular metabolic activities. In this study, successful application of such techniques to enhance recombinant protein production by reducing acetate accumulation in Escherichia coli is presented. The alsS gene from Bacillus subtilis encoding the enzyme acetolactate synthase was introduced into E. coli cells using a multicopy plasmid. This newly introduced heterologous enzyme modifies the glycolytic fluxes by redirecting excess pyruvate away from acetate to acetolactate. Acetolactate is then converted to a nonacidic and less harmful byproduct acetoin, which appears in the broth. Furthermore, comparative fermentation studies show that the reduction in acetate accumulation leads to a significant improvement of recombinant protein production. The expression of a model recombinant CadA/beta-galactosidase fusion protein, under the control of a strong pH-regulated promoter, was found to increase by about 60% for the specific protein activity (to a level of 30% of total cellular protein) and 50% in terms of the volumetric activity in a batch fermenter. In fed-batch cultivation, the engineered strain achieved a volumetric recombinant protein yield of 1.6 million units/mL (about 1.1 g/L of beta-galactosidase), which represented a 220% enhancement over the control strain. In the meantime, acetate excretion was maintained below 20 mM compared with 80 mM for the control, and the final cell density was improved by 35%.

117 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Hydrogen Production by Water−Gas Shift Reaction 4056 4.1.
Abstract: 1.0. Introduction 4044 2.0. Biomass Chemistry and Growth Rates 4047 2.1. Lignocellulose and Starch-Based Plants 4047 2.2. Triglyceride-Producing Plants 4049 2.3. Algae 4050 2.4. Terpenes and Rubber-Producing Plants 4052 3.0. Biomass Gasification 4052 3.1. Gasification Chemistry 4052 3.2. Gasification Reactors 4054 3.3. Supercritical Gasification 4054 3.4. Solar Gasification 4055 3.5. Gas Conditioning 4055 4.0. Syn-Gas Utilization 4056 4.1. Hydrogen Production by Water−Gas Shift Reaction 4056

7,067 citations

Journal ArticleDOI
TL;DR: A concluding discussion identifies unresolved issues pertaining to microbial cellulose utilization, suggests approaches by which such issues might be resolved, and contrasts a microbially oriented cellulose hydrolysis paradigm to the more conventional enzymatically oriented paradigm in both fundamental and applied contexts.
Abstract: Fundamental features of microbial cellulose utilization are examined at successively higher levels of aggregation encompassing the structure and composition of cellulosic biomass, taxonomic diversity, cellulase enzyme systems, molecular biology of cellulase enzymes, physiology of cellulolytic microorganisms, ecological aspects of cellulase-degrading communities, and rate-limiting factors in nature. The methodological basis for studying microbial cellulose utilization is considered relative to quantification of cells and enzymes in the presence of solid substrates as well as apparatus and analysis for cellulose-grown continuous cultures. Quantitative description of cellulose hydrolysis is addressed with respect to adsorption of cellulase enzymes, rates of enzymatic hydrolysis, bioenergetics of microbial cellulose utilization, kinetics of microbial cellulose utilization, and contrasting features compared to soluble substrate kinetics. A biological perspective on processing cellulosic biomass is presented, including features of pretreated substrates and alternative process configurations. Organism development is considered for "consolidated bioprocessing" (CBP), in which the production of cellulolytic enzymes, hydrolysis of biomass, and fermentation of resulting sugars to desired products occur in one step. Two organism development strategies for CBP are examined: (i) improve product yield and tolerance in microorganisms able to utilize cellulose, or (ii) express a heterologous system for cellulose hydrolysis and utilization in microorganisms that exhibit high product yield and tolerance. A concluding discussion identifies unresolved issues pertaining to microbial cellulose utilization, suggests approaches by which such issues might be resolved, and contrasts a microbially oriented cellulose hydrolysis paradigm to the more conventional enzymatically oriented paradigm in both fundamental and applied contexts.

4,769 citations

Journal ArticleDOI
Yan Lin1, Shuzo Tanaka1
TL;DR: The prospects included are fermentation technology converting xylose to ethanol, cellulase enzyme utilized in the hydrolysis of lignocellulosic materials, immobilization of the microorganism in large systems, simultaneous saccharification and fermentation, and sugar conversion into ethanol.
Abstract: In recent years, growing attention has been devoted to the conversion of biomass into fuel ethanol, considered the cleanest liquid fuel alternative to fossil fuels. Significant advances have been made towards the technology of ethanol fermentation. This review provides practical examples and gives a broad overview of the current status of ethanol fermentation including biomass resources, microorganisms, and technology. Also, the promising prospects of ethanol fermentation are especially introduced. The prospects included are fermentation technology converting xylose to ethanol, cellulase enzyme utilized in the hydrolysis of lignocellulosic materials, immobilization of the microorganism in large systems, simultaneous saccharification and fermentation, and sugar conversion into ethanol.

1,610 citations

Journal ArticleDOI
TL;DR: The various hemicelluloses structures present in lignocellulose, the range of pre-treatment and hydrolysis options including the enzymatic ones, and the role of different microbial strains on process integration aiming to reach a meaningful consolidated bioprocessing are reviewed.

1,355 citations

Journal ArticleDOI
Jack D. Keene1
TL;DR: Several recently discovered examples of RNA operons in budding yeast, fruitfly and mammalian cells are described and their potential importance in processes such as immune response, oxidative metabolism, stress response, circadian rhythms and disease are described.
Abstract: Recent findings demonstrate that multiple mRNAs are co-regulated by one or more sequence-specific RNA-binding proteins that orchestrate their splicing, export, stability, localization and translation. These and other observations have given rise to a model in which mRNAs that encode functionally related proteins are coordinately regulated during cell growth and differentiation as post-transcriptional RNA operons or regulons, through a ribonucleoprotein-driven mechanism. Here I describe several recently discovered examples of RNA operons in budding yeast, fruitfly and mammalian cells, and their potential importance in processes such as immune response, oxidative metabolism, stress response, circadian rhythms and disease. I close by considering the evolutionary wiring and rewiring of these combinatorial post-transcriptional gene-expression networks.

1,261 citations