scispace - formally typeset
Search or ask a question
Author

Arjun D. Desai

Other affiliations: Duke University
Bio: Arjun D. Desai is an academic researcher from Stanford University. The author has contributed to research in topics: Computer science & Medicine. The author has an hindex of 6, co-authored 17 publications receiving 131 citations. Previous affiliations of Arjun D. Desai include Duke University.

Papers
More filters
Journal ArticleDOI
TL;DR: This work has shown that super‐resolution is an emerging method for enhancing MRI resolution and its impact on image quality is still unknown.
Abstract: BACKGROUND Super-resolution is an emerging method for enhancing MRI resolution; however, its impact on image quality is still unknown. PURPOSE To evaluate MRI super-resolution using quantitative and qualitative metrics of cartilage morphometry, osteophyte detection, and global image blurring. STUDY TYPE Retrospective. POPULATION In all, 176 MRI studies of subjects at varying stages of osteoarthritis. FIELD STRENGTH/SEQUENCE Original-resolution 3D double-echo steady-state (DESS) and DESS with 3× thicker slices retrospectively enhanced using super-resolution and tricubic interpolation (TCI) at 3T. ASSESSMENT A quantitative comparison of femoral cartilage morphometry was performed for the original-resolution DESS, the super-resolution, and the TCI scans in 17 subjects. A reader study by three musculoskeletal radiologists assessed cartilage image quality, overall image sharpness, and osteophytes incidence in all three sets of scans. A referenceless blurring metric evaluated blurring in all three image dimensions for the three sets of scans. STATISTICAL TESTS Mann-Whitney U-tests compared Dice coefficients (DC) of segmentation accuracy for the DESS, super-resolution, and TCI images, along with the image quality readings and blurring metrics. Sensitivity, specificity, and diagnostic odds ratio (DOR) with 95% confidence intervals compared osteophyte detection for the super-resolution and TCI images, with the original-resolution as a reference. RESULTS DC for the original-resolution (90.2 ± 1.7%) and super-resolution (89.6 ± 2.0%) were significantly higher (P < 0.001) than TCI (86.3 ± 5.6%). Segmentation overlap of super-resolution with the original-resolution (DC = 97.6 ± 0.7%) was significantly higher (P < 0.0001) than TCI overlap (DC = 95.0 ± 1.1%). Cartilage image quality for sharpness and contrast levels, and the through-plane quantitative blur factor for super-resolution images, was significantly (P < 0.001) better than TCI. Super-resolution osteophyte detection sensitivity of 80% (76-82%), specificity of 93% (92-94%), and DOR of 32 (22-46) was significantly higher (P < 0.001) than TCI sensitivity of 73% (69-76%), specificity of 90% (89-91%), and DOR of 17 (13-22). DATA CONCLUSION Super-resolution appears to consistently outperform naive interpolation and may improve image quality without biasing quantitative biomarkers. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2020;51:768-779.

47 citations

Journal ArticleDOI
10 Feb 2021
TL;DR: Diverse networks learned to segment the knee similarly, where high segmentation accuracy did not correlate with cartilage thickness accuracy and voting ensembles did not exceed individual network performance.
Abstract: A multi-institute challenge for knee MRI segmentation was organized, in which a generalized framework for characterizing and evaluating the semantic and clinical efficacy of automatic segmentation

45 citations

Journal ArticleDOI
TL;DR: In this article, the safety and efficacy of a novel optical coherence tomography (OCT)guided atherectomy catheter in treating patients with symptomatic femoropopliteal disease was evaluated.
Abstract: Purpose: To evaluate the safety and efficacy of a novel optical coherence tomography (OCT)–guided atherectomy catheter in treating patients with symptomatic femoropopliteal disease. Methods: The VI...

38 citations

Posted Content
TL;DR: The impact of three factors associated with CNN segmentation performance: network architecture, training loss functions, and training data characteristics are evaluated and potential modifications to CNN architectures and training protocols are proposed.
Abstract: High-fidelity semantic segmentation of magnetic resonance volumes is critical for estimating tissue morphometry and relaxation parameters in both clinical and research applications. While manual segmentation is accepted as the gold-standard, recent advances in deep learning and convolutional neural networks (CNNs) have shown promise for efficient automatic segmentation of soft tissues. However, due to the stochastic nature of deep learning and the multitude of hyperparameters in training networks, predicting network behavior is challenging. In this paper, we quantify the impact of three factors associated with CNN segmentation performance: network architecture, training loss functions, and training data characteristics. We evaluate the impact of these variations on the segmentation of femoral cartilage and propose potential modifications to CNN architectures and training protocols to train these models with confidence.

26 citations

Journal ArticleDOI
14 Mar 2022
TL;DR: The Stanford Knee MRI with Multi-Task Evaluation (SKM-TEA) dataset is presented, a collection of quantitative knee MRI (qMRI) scans that enables end-to-end, clinically-relevant evaluation of MRI reconstruction and analysis tools and a framework for using qMRI parameter maps, along with image reconstructions and dense image labels, for measuring the quality of qMRI biomarker estimates extracted from MRI reconstruction, segmentation, and detection techniques.
Abstract: Magnetic resonance imaging (MRI) is a cornerstone of modern medical imaging. However, long image acquisition times, the need for qualitative expert analysis, and the lack of (and difficulty extracting) quantitative indicators that are sensitive to tissue health have curtailed widespread clinical and research studies. While recent machine learning methods for MRI reconstruction and analysis have shown promise for reducing this burden, these techniques are primarily validated with imperfect image quality metrics, which are discordant with clinically-relevant measures that ultimately hamper clinical deployment and clinician trust. To mitigate this challenge, we present the Stanford Knee MRI with Multi-Task Evaluation (SKM-TEA) dataset, a collection of quantitative knee MRI (qMRI) scans that enables end-to-end, clinically-relevant evaluation of MRI reconstruction and analysis tools. This 1.6TB dataset consists of raw-data measurements of ~25,000 slices (155 patients) of anonymized patient MRI scans, the corresponding scanner-generated DICOM images, manual segmentations of four tissues, and bounding box annotations for sixteen clinically relevant pathologies. We provide a framework for using qMRI parameter maps, along with image reconstructions and dense image labels, for measuring the quality of qMRI biomarker estimates extracted from MRI reconstruction, segmentation, and detection techniques. Finally, we use this framework to benchmark state-of-the-art baselines on this dataset. We hope our SKM-TEA dataset and code can enable a broad spectrum of research for modular image reconstruction and image analysis in a clinically informed manner. Dataset access, code, and benchmarks are available at https://github.com/StanfordMIMI/skm-tea.

24 citations


Cited by
More filters
Reference EntryDOI
15 Oct 2004

2,118 citations

Journal ArticleDOI
TL;DR: A comprehensive and in-depth study of Deep Learning methodologies and applications in medicine and how, where and why Deep Learning models are applied in medicine is presented.

162 citations

Proceedings ArticleDOI
27 May 2022
TL;DR: This work proposes FlashAttention, an IO-aware exact attention algorithm that uses tiling to reduce the number of memory reads/writes between GPU high bandwidth memory (HBM) and GPU on-chip SRAM, and is optimal for a range of SRAM sizes.
Abstract: Transformers are slow and memory-hungry on long sequences, since the time and memory complexity of self-attention are quadratic in sequence length. Approximate attention methods have attempted to address this problem by trading off model quality to reduce the compute complexity, but often do not achieve wall-clock speedup. We argue that a missing principle is making attention algorithms IO-aware -- accounting for reads and writes between levels of GPU memory. We propose FlashAttention, an IO-aware exact attention algorithm that uses tiling to reduce the number of memory reads/writes between GPU high bandwidth memory (HBM) and GPU on-chip SRAM. We analyze the IO complexity of FlashAttention, showing that it requires fewer HBM accesses than standard attention, and is optimal for a range of SRAM sizes. We also extend FlashAttention to block-sparse attention, yielding an approximate attention algorithm that is faster than any existing approximate attention method. FlashAttention trains Transformers faster than existing baselines: 15% end-to-end wall-clock speedup on BERT-large (seq. length 512) compared to the MLPerf 1.1 training speed record, 3$\times$ speedup on GPT-2 (seq. length 1K), and 2.4$\times$ speedup on long-range arena (seq. length 1K-4K). FlashAttention and block-sparse FlashAttention enable longer context in Transformers, yielding higher quality models (0.7 better perplexity on GPT-2 and 6.4 points of lift on long-document classification) and entirely new capabilities: the first Transformers to achieve better-than-chance performance on the Path-X challenge (seq. length 16K, 61.4% accuracy) and Path-256 (seq. length 64K, 63.1% accuracy).

142 citations

Journal ArticleDOI
TL;DR: This article is an introductory overview aimed at clinical radiologists with no experience in deep‐learning‐based MR image reconstruction and should enable them to understand the basic concepts and current clinical applications of this rapidly growing area of research across multiple organ systems.
Abstract: Artificial intelligence (AI) shows tremendous promise in the field of medical imaging, with recent breakthroughs applying deep-learning models for data acquisition, classification problems, segmentation, image synthesis, and image reconstruction. With an eye towards clinical applications, we summarize the active field of deep-learning-based MR image reconstruction. We review the basic concepts of how deep-learning algorithms aid in the transformation of raw k-space data to image data, and specifically examine accelerated imaging and artifact suppression. Recent efforts in these areas show that deep-learning-based algorithms can match and, in some cases, eclipse conventional reconstruction methods in terms of image quality and computational efficiency across a host of clinical imaging applications, including musculoskeletal, abdominal, cardiac, and brain imaging. This article is an introductory overview aimed at clinical radiologists with no experience in deep-learning-based MR image reconstruction and should enable them to understand the basic concepts and current clinical applications of this rapidly growing area of research across multiple organ systems.

89 citations