scispace - formally typeset
Search or ask a question
Author

Arkadi Nemirovski

Bio: Arkadi Nemirovski is an academic researcher from Georgia Institute of Technology. The author has contributed to research in topics: Convex optimization & Semidefinite programming. The author has an hindex of 48, co-authored 158 publications receiving 18834 citations. Previous affiliations of Arkadi Nemirovski include University of Erlangen-Nuremberg & Technion – Israel Institute of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: If U is an ellipsoidal uncertainty set, then for some of the most important generic convex optimization problems (linear programming, quadratically constrained programming, semidefinite programming and others) the corresponding robust convex program is either exactly, or approximately, a tractable problem which lends itself to efficientalgorithms such as polynomial time interior point methods.
Abstract: We study convex optimization problems for which the data is not specified exactly and it is only known to belong to a given uncertainty set U, yet the constraints must hold for all possible values of the data from U. The ensuing optimization problem is called robust optimization. In this paper we lay the foundation of robust convex optimization. In the main part of the paper we show that if U is an ellipsoidal uncertainty set, then for some of the most important generic convex optimization problems (linear programming, quadratically constrained programming, semidefinite programming and others) the corresponding robust convex program is either exactly, or approximately, a tractable problem which lends itself to efficientalgorithms such as polynomial time interior point methods.

2,501 citations

Journal ArticleDOI
TL;DR: It is intended to demonstrate that a properly modified SA approach can be competitive and even significantly outperform the SAA method for a certain class of convex stochastic problems.
Abstract: In this paper we consider optimization problems where the objective function is given in a form of the expectation. A basic difficulty of solving such stochastic optimization problems is that the involved multidimensional integrals (expectations) cannot be computed with high accuracy. The aim of this paper is to compare two computational approaches based on Monte Carlo sampling techniques, namely, the stochastic approximation (SA) and the sample average approximation (SAA) methods. Both approaches, the SA and SAA methods, have a long history. Current opinion is that the SAA method can efficiently use a specific (say, linear) structure of the considered problem, while the SA approach is a crude subgradient method, which often performs poorly in practice. We intend to demonstrate that a properly modified SA approach can be competitive and even significantly outperform the SAA method for a certain class of convex stochastic problems. We extend the analysis to the case of convex-concave stochastic saddle point problems and present (in our opinion highly encouraging) results of numerical experiments.

2,346 citations

Journal ArticleDOI
TL;DR: It is shown that the RC of an LP with ellipsoidal uncertainty set is computationally tractable, since it leads to a conic quadratic program, which can be solved in polynomial time.

1,809 citations

Journal ArticleDOI
TL;DR: The Robust Optimization methodology is applied to produce “robust” solutions of the above LPs which are in a sense immuned against uncertainty for the NETLIB problems.
Abstract: Optimal solutions of Linear Programming problems may become severely infeasible if the nominal data is slightly perturbed. We demonstrate this phenomenon by studying 90 LPs from the well-known NETLIB collection. We then apply the Robust Optimization methodology (Ben-Tal and Nemirovski [1–3]; El Ghaoui et al. [5, 6]) to produce “robust” solutions of the above LPs which are in a sense immuned against uncertainty. Surprisingly, for the NETLIB problems these robust solutions nearly lose nothing in optimality.

1,674 citations

Journal ArticleDOI
TL;DR: The Affinely Adjustable Robust Counterpart (AARC) problem is shown to be, in certain important cases, equivalent to a tractable optimization problem, and in other cases, having a tight approximation which is tractable.
Abstract: We consider linear programs with uncertain parameters, lying in some prescribed uncertainty set, where part of the variables must be determined before the realization of the uncertain parameters (‘‘non-adjustable variables’’), while the other part are variables that can be chosen after the realization (‘‘adjustable variables’’). We extend the Robust Optimization methodology ([1, 3-6, 9, 13, 14]) to this situation by introducing the Adjustable Robust Counterpart (ARC) associated with an LP of the above structure. Often the ARC is significantly less conservative than the usual Robust Counterpart (RC), however, in most cases the ARC is computationally intractable (NP-hard). This difficulty is addressed by restricting the adjustable variables to be affine functions of the uncertain data. The ensuing Affinely Adjustable Robust Counterpart (AARC) problem is then shown to be, in certain important cases, equivalent to a tractable optimization problem (typically an LP or a Semidefinite problem), and in other cases, having a tight approximation which is tractable. The AARC approach is illustrated by applying it to a multi-stage inventory management problem.

1,407 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors considered the model problem of reconstructing an object from incomplete frequency samples and showed that with probability at least 1-O(N/sup -M/), f can be reconstructed exactly as the solution to the lscr/sub 1/ minimization problem.
Abstract: This paper considers the model problem of reconstructing an object from incomplete frequency samples. Consider a discrete-time signal f/spl isin/C/sup N/ and a randomly chosen set of frequencies /spl Omega/. Is it possible to reconstruct f from the partial knowledge of its Fourier coefficients on the set /spl Omega/? A typical result of this paper is as follows. Suppose that f is a superposition of |T| spikes f(t)=/spl sigma//sub /spl tau//spl isin/T/f(/spl tau/)/spl delta/(t-/spl tau/) obeying |T|/spl les/C/sub M//spl middot/(log N)/sup -1/ /spl middot/ |/spl Omega/| for some constant C/sub M/>0. We do not know the locations of the spikes nor their amplitudes. Then with probability at least 1-O(N/sup -M/), f can be reconstructed exactly as the solution to the /spl lscr//sub 1/ minimization problem. In short, exact recovery may be obtained by solving a convex optimization problem. We give numerical values for C/sub M/ which depend on the desired probability of success. Our result may be interpreted as a novel kind of nonlinear sampling theorem. In effect, it says that any signal made out of |T| spikes may be recovered by convex programming from almost every set of frequencies of size O(|T|/spl middot/logN). Moreover, this is nearly optimal in the sense that any method succeeding with probability 1-O(N/sup -M/) would in general require a number of frequency samples at least proportional to |T|/spl middot/logN. The methodology extends to a variety of other situations and higher dimensions. For example, we show how one can reconstruct a piecewise constant (one- or two-dimensional) object from incomplete frequency samples - provided that the number of jumps (discontinuities) obeys the condition above - by minimizing other convex functionals such as the total variation of f.

14,587 citations

Proceedings Article
01 Jan 2010
TL;DR: Adaptive subgradient methods as discussed by the authors dynamically incorporate knowledge of the geometry of the data observed in earlier iterations to perform more informative gradient-based learning, which allows us to find needles in haystacks in the form of very predictive but rarely seen features.
Abstract: We present a new family of subgradient methods that dynamically incorporate knowledge of the geometry of the data observed in earlier iterations to perform more informative gradient-based learning. Metaphorically, the adaptation allows us to find needles in haystacks in the form of very predictive but rarely seen features. Our paradigm stems from recent advances in stochastic optimization and online learning which employ proximal functions to control the gradient steps of the algorithm. We describe and analyze an apparatus for adaptively modifying the proximal function, which significantly simplifies setting a learning rate and results in regret guarantees that are provably as good as the best proximal function that can be chosen in hindsight. We give several efficient algorithms for empirical risk minimization problems with common and important regularization functions and domain constraints. We experimentally study our theoretical analysis and show that adaptive subgradient methods outperform state-of-the-art, yet non-adaptive, subgradient algorithms.

7,244 citations

Journal Article
TL;DR: This work describes and analyze an apparatus for adaptively modifying the proximal function, which significantly simplifies setting a learning rate and results in regret guarantees that are provably as good as the best proximal functions that can be chosen in hindsight.
Abstract: We present a new family of subgradient methods that dynamically incorporate knowledge of the geometry of the data observed in earlier iterations to perform more informative gradient-based learning. Metaphorically, the adaptation allows us to find needles in haystacks in the form of very predictive but rarely seen features. Our paradigm stems from recent advances in stochastic optimization and online learning which employ proximal functions to control the gradient steps of the algorithm. We describe and analyze an apparatus for adaptively modifying the proximal function, which significantly simplifies setting a learning rate and results in regret guarantees that are provably as good as the best proximal function that can be chosen in hindsight. We give several efficient algorithms for empirical risk minimization problems with common and important regularization functions and domain constraints. We experimentally study our theoretical analysis and show that adaptive subgradient methods outperform state-of-the-art, yet non-adaptive, subgradient algorithms.

6,984 citations

Journal ArticleDOI
TL;DR: A first-order primal-dual algorithm for non-smooth convex optimization problems with known saddle-point structure can achieve O(1/N2) convergence on problems, where the primal or the dual objective is uniformly convex, and it can show linear convergence, i.e. O(ωN) for some ω∈(0,1), on smooth problems.
Abstract: In this paper we study a first-order primal-dual algorithm for non-smooth convex optimization problems with known saddle-point structure. We prove convergence to a saddle-point with rate O(1/N) in finite dimensions for the complete class of problems. We further show accelerations of the proposed algorithm to yield improved rates on problems with some degree of smoothness. In particular we show that we can achieve O(1/N 2) convergence on problems, where the primal or the dual objective is uniformly convex, and we can show linear convergence, i.e. O(? N ) for some ??(0,1), on smooth problems. The wide applicability of the proposed algorithm is demonstrated on several imaging problems such as image denoising, image deconvolution, image inpainting, motion estimation and multi-label image segmentation.

4,487 citations