scispace - formally typeset
Search or ask a question
Author

Arkadiusz Gradys

Bio: Arkadiusz Gradys is an academic researcher from Polish Academy of Sciences. The author has contributed to research in topics: Crystallization & Differential scanning calorimetry. The author has an hindex of 13, co-authored 27 publications receiving 590 citations. Previous affiliations of Arkadiusz Gradys include Technion – Israel Institute of Technology.

Papers
More filters
Journal ArticleDOI
TL;DR: This study showed that the electrospinning technique can be used as a single-step process for obtaining a vast spectrum of PVDF fibers exhibiting different physicochemical properties with β-phase crystallinity reaching up to 74%.
Abstract: Piezoelectric polymers are promising energy materials for wearable and implantable applications for replacing bulky batteries in small and flexible electronics. Therefore, many research studies are focused on understanding the behavior of polymers at a molecular level and designing new polymer-based generators using polyvinylidene fluoride (PVDF). In this work, we investigated the influence of voltage polarity and ambient relative humidity in electrospinning of PVDF for energy-harvesting applications. A multitechnique approach combining microscopy and spectroscopy was used to study the content of the β-phase and piezoelectric properties of PVDF fibers. We shed new light on β-phase crystallization in electrospun PVDF and showed the enhanced piezoelectric response of the PVDF fiber-based generator produced with the negative voltage polarity at a relative humidity of 60%. Above all, we proved that not only crystallinity but also surface chemistry is crucial for improving piezoelectric performance in PVDF fibers. Controlling relative humidity and voltage polarity increased the d33 piezoelectric coefficient for PVDF fibers by more than three times and allowed us to generate a power density of 0.6 μW·cm-2 from PVDF membranes. This study showed that the electrospinning technique can be used as a single-step process for obtaining a vast spectrum of PVDF fibers exhibiting different physicochemical properties with β-phase crystallinity reaching up to 74%. The humidity and voltage polarity are critical factors in respect of chemistry of the material on piezoelectricity of PVDF fibers, which establishes a novel route to engineer materials for energy-harvesting and sensing applications.

124 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated non-isothermal melt crystallization of isotactic polypropylene at cooling rates ranging from 1 up to 180,000 K/min using two types of differential scanning calorimeters-standard device Perkin-Elmer DSC Pyris-1 and ultra fast calorimeter.
Abstract: Crystallization of polypropylene (PP) can result in formation of different crystal modifications depending on external conditions. The mechanisms of formation of various crystal modifications in polypropylene are still under discussion. We have investigated non-isothermal melt crystallization of isotactic polypropylene at cooling rates ranging from 1 up to 180,000 K/min using two types of differential scanning calorimeters-standard device Perkin–Elmer DSC Pyris-1 and ultra-fast calorimeter. Additional results were obtained by means of wide angle X-ray scattering and optical microscopy. At cooling rates below 6000 K/min there is only one exothermic peak corresponding to simultaneous crystallization of α- and β-modifications. At cooling rates higher than 6000 K/min there is additional low temperature DSC peak corresponding to formation of mesomorphic phase. At the rates higher than 36,000 K/min there is no trace of formation of any ordered phase. In our opinion this complex behavior observed during crystallization of polypropylene can be explained using the concept of metastable phases. An increase of β content in samples with quinacridone pigment has been observed only at very low cooling rates, corresponding to high temperatures of crystallization and low homogeneous nucleation rate.

121 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated polyvinylidene fluoride (PVDF) in non-isothermal mode at ultra-high cooling rates ranging between 30-3000 k/s as well as at constant temperatures after quenching at 6000k/s.

100 citations

Journal ArticleDOI
08 Jan 2020-Polymers
TL;DR: This paper summarizes the recent knowledge on piezoelectric materials used for tissue engineering, especially neural tissue engineering and provides a starting point for novel research pathways in the most relevant and challenging open questions.
Abstract: Injury to the central or peripheral nervous systems leads to the loss of cognitive and/or sensorimotor capabilities, which still lacks an effective treatment. Tissue engineering in the post-injury brain represents a promising option for cellular replacement and rescue, providing a cell scaffold for either transplanted or resident cells. Tissue engineering relies on scaffolds for supporting cell differentiation and growth with recent emphasis on stimuli responsive scaffolds, sometimes called smart scaffolds. One of the representatives of this material group is piezoelectric scaffolds, being able to generate electrical charges under mechanical stimulation, which creates a real prospect for using such scaffolds in non-invasive therapy of neural tissue. This paper summarizes the recent knowledge on piezoelectric materials used for tissue engineering, especially neural tissue engineering. The most used materials for tissue engineering strategies are reported together with the main achievements, challenges, and future needs for research and actual therapies. This review provides thus a compilation of the most relevant results and strategies and serves as a starting point for novel research pathways in the most relevant and challenging open questions.

74 citations

Journal ArticleDOI
10 Nov 2020-Polymers
TL;DR: This review discusses the state-of-the-art of hydrophilic surface functionalization strategies of electrospun nanofibers for tissue engineering applications and highlighted the major advantages and drawbacks of each method.
Abstract: Electrospun polymer nanofibers have received much attention in tissue engineering due to their valuable properties such as biocompatibility, biodegradation ability, appropriate mechanical properties, and, most importantly, fibrous structure, which resembles the morphology of extracellular matrix (ECM) proteins. However, they are usually hydrophobic and suffer from a lack of bioactive molecules, which provide good cell adhesion to the scaffold surface. Post-electrospinning surface functionalization allows overcoming these limitations through polar groups covalent incorporation to the fibers surface, with subsequent functionalization with biologically active molecules or direct deposition of the biomolecule solution. Hydrophilic surface functionalization methods are classified into chemical approaches, including wet chemical functionalization and covalent grafting, a physiochemical approach with the use of a plasma treatment, and a physical approach that might be divided into physical adsorption and layer-by-layer assembly. This review discusses the state-of-the-art of hydrophilic surface functionalization strategies of electrospun nanofibers for tissue engineering applications. We highlighted the major advantages and drawbacks of each method, at the same time, pointing out future perspectives and solutions in the hydrophilic functionalization strategies.

62 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the main characteristics of the electroactive phases of polyvinylidene fluoride and copolymers are summarized, and some interesting potential applications and processing challenges are discussed.

2,242 citations

Journal ArticleDOI
TL;DR: This Review presents a comprehensive review of the use of ferroelectric polymers, especially PVDF and PVDF-based copolymers/blends as potential components in dielectric nanocomposite materials for high energy density capacitor applications.
Abstract: Dielectric polymer nanocomposites are rapidly emerging as novel materials for a number of advanced engineering applications. In this Review, we present a comprehensive review of the use of ferroelectric polymers, especially PVDF and PVDF-based copolymers/blends as potential components in dielectric nanocomposite materials for high energy density capacitor applications. Various parameters like dielectric constant, dielectric loss, breakdown strength, energy density, and flexibility of the polymer nanocomposites have been thoroughly investigated. Fillers with different shapes have been found to cause significant variation in the physical and electrical properties. Generally, one-dimensional and two-dimensional nanofillers with large aspect ratios provide enhanced flexibility versus zero-dimensional fillers. Surface modification of nanomaterials as well as polymers adds flavor to the dielectric properties of the resulting nanocomposites. Nowadays, three-phase nanocomposites with either combination of fillers...

1,143 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a set of recommendations for obtaining kinetic data that are adequate to the actual kinetics of various processes, including thermal decomposition of inorganic solids; thermal and thermo-oxidative degradation of polymers and organics; reactions of solids with gases; polymerization and crosslinking; crystallization of polymer and inorganics; hazardous processes.

890 citations

Journal ArticleDOI
TL;DR: A review of different classes of polyhydroxyalkanoates, their main properties, processing aspects, commercially available ones, as well as limitations and related improvements being researched, with specific focus on potential applications of PHAs in packag- ing is presented in this paper.
Abstract: Polyhydroxyalkanoates (PHAs) are gaining increasing attention in the biodegradable polymer market due to their promising properties such as high biodegradability in different environments, not just in composting plants, and pro- cessing versatility. Indeed among biopolymers, these biogenic polyesters represent a potential sustainable replacement for fossil fuel-based thermoplastics. Most commercially available PHAs are obtained with pure microbial cultures grown on renewable feedstocks (i.e. glucose) under sterile conditions but recent research studies focus on the use of wastes as growth media. PHA can be extracted from the bacteria cell and then formulated and processed by extrusion for production of rigid and flexible plastic suitable not just for the most assessed medical applications but also considered for applications includ- ing packaging, moulded goods, paper coatings, non-woven fabrics, adhesives, films and performance additives. The present paper reviews the different classes of PHAs, their main properties, processing aspects, commercially available ones, as well as limitations and related improvements being researched, with specific focus on potential applications of PHAs in packag- ing.

651 citations

01 Apr 2010
TL;DR: Polycaprolactone (PCL) was used in the biomaterials field and a number of drug-delivery devices for up to 3-4 years as discussed by the authors.
Abstract: During the resorbable-polymer-boom of the 1970s and 1980s, polycaprolactone (PCL) was used in the biomaterials field and a number of drug-delivery devices. Its popularity was soon superseded by faster resorbable polymers which had fewer perceived disadvantages associated with long term degradation (up to 3-4 years) and intracellular resorption pathways; consequently, PCL was almost forgotten for most of two decades. Recently, a resurgence of interest has propelled PCL back into the biomaterials-arena. The superior rheological and viscoelastic properties over many of its aliphatic polyester counterparts renders PCL easy to manufacture and manipulate into a large range of implants and devices. Coupled with relatively inexpensive production routes and FDA approval, this provides a promising platform for the production of longer-term degradable implants which may be manipulated physically, chemically and biologically to possess tailorable degradation kinetics to suit a specific anatomical site. This review will discuss the application of PCL as a biomaterial over the last two decades focusing on the advantages which have propagated its return into the spotlight with a particular focus on medical devices, drug delivery and tissue engineering.

480 citations