scispace - formally typeset
Search or ask a question
Author

Arkady A. Tseytlin

Bio: Arkady A. Tseytlin is an academic researcher from Imperial College London. The author has contributed to research in topics: Superstring theory & String (physics). The author has an hindex of 117, co-authored 405 publications receiving 42252 citations. Previous affiliations of Arkady A. Tseytlin include Moscow State University & Isaac Newton Institute.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present an overview of the achievements and the status of integrability in the context of the AdS/CFT correspondence as of the year 2010.
Abstract: This is the introductory chapter of a review collection on integrability in the context of the AdS/CFT correspondence. In the collection we present an overview of the achievements and the status of this subject as of the year 2010.

1,564 citations

Journal ArticleDOI
TL;DR: In this paper, the effective action for an abelian vector field coupled to the virtual open Bose string was computed in the tree and one-loop approximation for the string theory.

1,179 citations

Journal ArticleDOI
TL;DR: In this paper, the covariant κ-symmetric superstring action for a type IIB superstring on AdS5 ⊕ S5 background was constructed and the action was defined as a 2d σ-model on the coset superspace SU(2.2|4) SO(4,1) x SO(5) and was shown to have the correct bosonic and flat space limits.

1,060 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that the part of the tree-level open string effective action for the non-abelian vector field which depends on the field strength but not on its covariant derivatives is not defined unambiguously.

748 citations

Journal ArticleDOI
TL;DR: In this paper, the authors developed semiclassical quantization of superstring in a large circle of S^5, and derived the corresponding quadratic fluctuation action for bosonic and fermionic fields from the GS string action and computed the string 1-loop correction to the classical energy spectrum in the S,J sector.
Abstract: Motivated by recent proposals in hep-th/0202021 and hep-th/0204051 we develop semiclassical quantization of superstring in $AdS_5 x S^5$. We start with a classical solution describing string rotating in $AdS_5$ and boosted along large circle of $S^5$. The energy of the classical solution $E$ is a function of the spin $S$ and the momentum $J$ (R-charge) which interpolates between the limiting cases S=0 and J=0 considered previously. We derive the corresponding quadratic fluctuation action for bosonic and fermionic fields from the GS string action and compute the string 1-loop (large $\lambda= {R^4\over \a'^2}$) correction to the classical energy spectrum in the $(S,J)$ sector. We find that the 1-loop correction to the ground-state energy does not cancel for non-zero $S$. For large $S$ it scales as $\ln S$, i.e. as the classical term, with no higher powers of $\ln S$ appearing. This supports the conjecture made in hep-th/0204051 that the classical $E-S = a \ln S$ scaling can be interpolated to weak coupling to reproduce the corresponding operator anomalous dimension behaviour in gauge theory.

737 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, it was shown that the large-N limits of certain conformal field theories in various dimensions include in their Hilbert space a sector describing supergravityon the product of anti-de Sitter spacetimes, spheres, and other compact manifolds.
Abstract: We show that the large-N limits of certainconformal field theories in various dimensions includein their Hilbert space a sector describing supergravityon the product of anti-de Sitter spacetimes, spheres, and other compact manifolds. This is shown bytaking some branes in the full M/string theory and thentaking a low-energy limit where the field theory on thebrane decouples from the bulk. We observe that, in this limit, we can still trust thenear-horizon geometry for large N. The enhancedsupersymmetries of the near-horizon geometry correspondto the extra supersymmetry generators present in thesuperconformal group (as opposed to just the super-Poincaregroup). The 't Hooft limit of 3 + 1 N = 4 super-Yang–Mills at the conformal pointis shown to contain strings: they are IIB strings. Weconjecture that compactifications of M/string theory on various anti-de Sitterspacetimes is dual to various conformal field theories.This leads to a new proposal for a definition ofM-theory which could be extended to include fivenoncompact dimensions.

15,567 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that the Kaluza-Klein modes of Type IIB supergravity on $AdS_5\times {\bf S}^5$ match with the chiral operators of the super Yang-Mills theory in four dimensions.
Abstract: Recently, it has been proposed by Maldacena that large $N$ limits of certain conformal field theories in $d$ dimensions can be described in terms of supergravity (and string theory) on the product of $d+1$-dimensional $AdS$ space with a compact manifold. Here we elaborate on this idea and propose a precise correspondence between conformal field theory observables and those of supergravity: correlation functions in conformal field theory are given by the dependence of the supergravity action on the asymptotic behavior at infinity. In particular, dimensions of operators in conformal field theory are given by masses of particles in supergravity. As quantitative confirmation of this correspondence, we note that the Kaluza-Klein modes of Type IIB supergravity on $AdS_5\times {\bf S}^5$ match with the chiral operators of ${\cal N}=4$ super Yang-Mills theory in four dimensions. With some further assumptions, one can deduce a Hamiltonian version of the correspondence and show that the ${\cal N}=4$ theory has a large $N$ phase transition related to the thermodynamics of $AdS$ black holes.

14,084 citations

Journal ArticleDOI
TL;DR: In this paper, a boundary of the anti-deSitter space analogous to a cut-off on the Liouville coordinate of the two-dimensional string theory is introduced to obtain certain Green's functions in 3+1-dimensional N = 4 supersymmetric Yang-Mills theory with a large number of colors via non-critical string theory.

11,887 citations

Posted Content
TL;DR: In this article, a correspondence between conformal field theory observables and those of supergravity was proposed, where correlation functions in conformal fields are given by the dependence of the supergravity action on the asymptotic behavior at infinity.
Abstract: Recently, it has been proposed by Maldacena that large $N$ limits of certain conformal field theories in $d$ dimensions can be described in terms of supergravity (and string theory) on the product of $d+1$-dimensional $AdS$ space with a compact manifold. Here we elaborate on this idea and propose a precise correspondence between conformal field theory observables and those of supergravity: correlation functions in conformal field theory are given by the dependence of the supergravity action on the asymptotic behavior at infinity. In particular, dimensions of operators in conformal field theory are given by masses of particles in supergravity. As quantitative confirmation of this correspondence, we note that the Kaluza-Klein modes of Type IIB supergravity on $AdS_5\times {\bf S}^5$ match with the chiral operators of $\N=4$ super Yang-Mills theory in four dimensions. With some further assumptions, one can deduce a Hamiltonian version of the correspondence and show that the $\N=4$ theory has a large $N$ phase transition related to the thermodynamics of $AdS$ black holes.

8,751 citations

Journal ArticleDOI
TL;DR: In this article, the Wilkinson Microwave Anisotropy Probe (WMAP) 5-year data were used to constrain the physics of cosmic inflation via Gaussianity, adiabaticity, the power spectrum of primordial fluctuations, gravitational waves, and spatial curvature.
Abstract: The Wilkinson Microwave Anisotropy Probe (WMAP) 5-year data provide stringent limits on deviations from the minimal, six-parameter Λ cold dark matter model. We report these limits and use them to constrain the physics of cosmic inflation via Gaussianity, adiabaticity, the power spectrum of primordial fluctuations, gravitational waves, and spatial curvature. We also constrain models of dark energy via its equation of state, parity-violating interaction, and neutrino properties, such as mass and the number of species. We detect no convincing deviations from the minimal model. The six parameters and the corresponding 68% uncertainties, derived from the WMAP data combined with the distance measurements from the Type Ia supernovae (SN) and the Baryon Acoustic Oscillations (BAO) in the distribution of galaxies, are: Ω b h 2 = 0.02267+0.00058 –0.00059, Ω c h 2 = 0.1131 ± 0.0034, ΩΛ = 0.726 ± 0.015, ns = 0.960 ± 0.013, τ = 0.084 ± 0.016, and at k = 0.002 Mpc-1. From these, we derive σ8 = 0.812 ± 0.026, H 0 = 70.5 ± 1.3 km s-1 Mpc–1, Ω b = 0.0456 ± 0.0015, Ω c = 0.228 ± 0.013, Ω m h 2 = 0.1358+0.0037 –0.0036, z reion = 10.9 ± 1.4, and t 0 = 13.72 ± 0.12 Gyr. With the WMAP data combined with BAO and SN, we find the limit on the tensor-to-scalar ratio of r 1 is disfavored even when gravitational waves are included, which constrains the models of inflation that can produce significant gravitational waves, such as chaotic or power-law inflation models, or a blue spectrum, such as hybrid inflation models. We obtain tight, simultaneous limits on the (constant) equation of state of dark energy and the spatial curvature of the universe: –0.14 < 1 + w < 0.12(95%CL) and –0.0179 < Ω k < 0.0081(95%CL). We provide a set of WMAP distance priors, to test a variety of dark energy models with spatial curvature. We test a time-dependent w with a present value constrained as –0.33 < 1 + w 0 < 0.21 (95% CL). Temperature and dark matter fluctuations are found to obey the adiabatic relation to within 8.9% and 2.1% for the axion-type and curvaton-type dark matter, respectively. The power spectra of TB and EB correlations constrain a parity-violating interaction, which rotates the polarization angle and converts E to B. The polarization angle could not be rotated more than –59 < Δα < 24 (95% CL) between the decoupling and the present epoch. We find the limit on the total mass of massive neutrinos of ∑m ν < 0.67 eV(95%CL), which is free from the uncertainty in the normalization of the large-scale structure data. The number of relativistic degrees of freedom (dof), expressed in units of the effective number of neutrino species, is constrained as N eff = 4.4 ± 1.5 (68%), consistent with the standard value of 3.04. Finally, quantitative limits on physically-motivated primordial non-Gaussianity parameters are –9 < f local NL < 111 (95% CL) and –151 < f equil NL < 253 (95% CL) for the local and equilateral models, respectively.

5,904 citations