scispace - formally typeset
Search or ask a question
Author

Armin Wittneben

Bio: Armin Wittneben is an academic researcher from ETH Zurich. The author has contributed to research in topics: Relay & MIMO. The author has an hindex of 30, co-authored 182 publications receiving 6314 citations. Previous affiliations of Armin Wittneben include École Polytechnique Fédérale de Lausanne.


Papers
More filters
Journal ArticleDOI
B. Rankov1, Armin Wittneben1
TL;DR: Two new half-duplex relaying protocols are proposed that avoid the pre-log factor one-half in corresponding capacity expressions and it is shown that both protocols recover a significant portion of the half- duplex loss.
Abstract: We study two-hop communication protocols where one or several relay terminals assist in the communication between two or more terminals. All terminals operate in half-duplex mode, hence the transmission of one information symbol from the source terminal to the destination terminal occupies two channel uses. This leads to a loss in spectral efficiency due to the pre-log factor one-half in corresponding capacity expressions. We propose two new half-duplex relaying protocols that avoid the pre-log factor one-half. Firstly, we consider a relaying protocol where a bidirectional connection between two terminals is established via one amplify-and-forward (AF) or decode-and-forward (DF) relay (two-way relaying). We also extend this protocol to a multi-user scenario, where multiple terminals communicate with multiple partner terminals via several orthogonalize-and-forward (OF) relay terminals, i.e., the relays orthogonalize the different two-way transmissions by a distributed zero-forcing algorithm. Secondly, we propose a relaying protocol where two relays, either AF or DF, alternately forward messages from a source terminal to a destination terminal (two-path relaying). It is shown that both protocols recover a significant portion of the half-duplex loss

1,728 citations

Proceedings ArticleDOI
09 Jul 2006
TL;DR: It is shown that a combined strategy of block Markov superposition coding and Wyner-Ziv coding achieves the cut-set upper bound on the sum-rate of the two-way relay channel when the relay is in the proximity of one of the terminals.
Abstract: We study the two-way communication problem for the relay channel. Hereby, two terminals communicate simultaneously in both directions with the help of one relay. We consider the restricted two-way problem, i.e., the encoders at both terminals do not cooperate. We provide achievable rate regions for different cooperation strategies, such as decode-and-forward based on block Markov superposition coding and compress-and-forward based on Wyner-Ziv source coding. We also evaluate the regions for the special case of additive white Gaussian noise channels. We show that a combined strategy of block Markov superposition coding and Wyner-Ziv coding achieves the cut-set upper bound on the sum-rate of the two-way relay channel when the relay is in the proximity of one of the terminals.

558 citations

Journal ArticleDOI
TL;DR: A two-hop MIMO-OFDM communication scheme with a source, an amplify-and-forward relay, and a destination is considered and a high SNR approximation of the SNR at the destination leads to rates which are quite tight to the optimum.
Abstract: We consider a two-hop MIMO-OFDM communication scheme with a source, an amplify-and-forward relay, and a destination. We examine the possibilities of power allocation (PA) over the subchannels in frequency and space domains to maximize the instantaneous rate of this link if channel state information at the transmitter (CSIT) is available. We consider two approaches: (i) separate optimization of the source or the relay PA with individual per node transmit power constraints and (ii) joint optimization of the source and the relay PA with joint transmit power constraint. We provide the optimal PA at the source (or the relay) with a node transmit power constraint that maximizes the instantaneous rate for a given relay (or source) PA. Furthermore, we show that repeating this separate optimization of the source and the relay PA alternately converges and improves the achievable rate of the considered link. Since the joint optimization of the source and the relay PA is analytically not tractable we use a high SNR approximation of the SNR at the destination. This approximation leads to rates which are quite tight to the optimum.

345 citations

Proceedings ArticleDOI
B. Rankov, Armin Wittneben1
01 Jan 2005
TL;DR: This work considers a relaying protocol where two half-duplex relays alternately forward messages from a source terminal to a destination terminal (two-path relaying), and it is shown that the protocol can recover a significant portion of the halfduplex loss.
Abstract: We study two-hop communication protocols where one or two relay terminals assist in the communication between two transceiver terminals. All terminals operate in half-duplex mode, i.e., may not receive and transmit simultaneously at the same time and frequency. This leads to a loss in spectral efficiency due to the pre-log factor 1/2 in corresponding expressions for the achievable rate (capacity). We propose and analyze two relaying protocols that avoid the pre-log factor 1/2 but still work with halfduplex relays. Firstly, we consider a relaying protocol where two half-duplex relays, either amplify-and-forward (AF) or decodeand-forward (DF), alternately forward messages from a source terminal to a destination terminal (two-path relaying). It is shown that the protocol can recover a significant portion of the halfduplex loss. Secondly, we propose a relaying protocol where a bidirectional connection between two transceiver terminals is established via one half-duplex AF or DF relay (two-way relaying). It is shown that the sum rate of the two-way half-duplex AF relay channel achieves the rate of the one-way full-duplex AF relay channel, whereas the sum rate of the two-way half-duplex DF relay channel achieves the rate of the one-way full-duplex DF relay channel only in certain cases.

309 citations

Proceedings ArticleDOI
16 Nov 2003
TL;DR: In this paper, the authors presented UWB channel measurements from 3 to 6 GHz for a body area network (BAN) in an anechoic chamber and an office room.
Abstract: The paper presents UWB channel measurements from 3 to 6 GHz for a body area network (BAN) in an anechoic chamber and an office room. Both, transmit and receive antenna were placed directly on the body. Channel parameters as delay spread and path loss are extracted from the measurements and the influence of the body is highlighted. We show that in some situations there are significant echoes from the body (e.g. from the arms) and we observed deterministic echoes from the floor that could help to simplify a RAKE receiver structure. Finally, we consider the overall energy consumption of the BAN and give decision regions for singlehop and multihop links in relation to signal processing energy.

268 citations


Cited by
More filters
Journal ArticleDOI
B. Rankov1, Armin Wittneben1
TL;DR: Two new half-duplex relaying protocols are proposed that avoid the pre-log factor one-half in corresponding capacity expressions and it is shown that both protocols recover a significant portion of the half- duplex loss.
Abstract: We study two-hop communication protocols where one or several relay terminals assist in the communication between two or more terminals. All terminals operate in half-duplex mode, hence the transmission of one information symbol from the source terminal to the destination terminal occupies two channel uses. This leads to a loss in spectral efficiency due to the pre-log factor one-half in corresponding capacity expressions. We propose two new half-duplex relaying protocols that avoid the pre-log factor one-half. Firstly, we consider a relaying protocol where a bidirectional connection between two terminals is established via one amplify-and-forward (AF) or decode-and-forward (DF) relay (two-way relaying). We also extend this protocol to a multi-user scenario, where multiple terminals communicate with multiple partner terminals via several orthogonalize-and-forward (OF) relay terminals, i.e., the relays orthogonalize the different two-way transmissions by a distributed zero-forcing algorithm. Secondly, we propose a relaying protocol where two relays, either AF or DF, alternately forward messages from a source terminal to a destination terminal (two-path relaying). It is shown that both protocols recover a significant portion of the half-duplex loss

1,728 citations

Proceedings ArticleDOI
27 Aug 2007
TL;DR: This paper adopts the opposite approach; it encourages strategically picked senders to interfere, and achieves significantly higher throughput than both traditional wireless routing and prior work on wireless network coding.
Abstract: Traditionally, interference is considered harmful. Wireless networks strive to avoid scheduling multiple transmissions at the same time in order to prevent interference. This paper adopts the opposite approach; it encourages strategically picked senders to interfere. Instead of forwarding packets, routers forward the interfering signals. The destination leverages network-level information to cancel the interference and recover the signal destined to it. The result is analog network coding because it mixes signals not bits.So, what if wireless routers forward signals instead of packets? Theoretically, such an approach doubles the capacity of the canonical 2-way relay network. Surprisingly, it is also practical. We implement our design using software radios and show that it achieves significantly higher throughput than both traditional wireless routing and prior work on wireless network coding.

1,440 citations

Journal ArticleDOI
TL;DR: The current state-of-art of WBANs is surveyed based on the latest standards and publications, and open issues and challenges within each area are explored as a source of inspiration towards future developments inWBANs.
Abstract: Recent developments and technological advancements in wireless communication, MicroElectroMechanical Systems (MEMS) technology and integrated circuits has enabled low-power, intelligent, miniaturized, invasive/non-invasive micro and nano-technology sensor nodes strategically placed in or around the human body to be used in various applications, such as personal health monitoring. This exciting new area of research is called Wireless Body Area Networks (WBANs) and leverages the emerging IEEE 802.15.6 and IEEE 802.15.4j standards, specifically standardized for medical WBANs. The aim of WBANs is to simplify and improve speed, accuracy, and reliability of communication of sensors/actuators within, on, and in the immediate proximity of a human body. The vast scope of challenges associated with WBANs has led to numerous publications. In this paper, we survey the current state-of-art of WBANs based on the latest standards and publications. Open issues and challenges within each area are also explored as a source of inspiration towards future developments in WBANs.

1,359 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed a new strategy, compute-and-forward, that exploits interference to obtain significantly higher rates between users in a network by decoding linear functions of transmitted messages according to their observed channel coefficients rather than ignoring the interference as noise.
Abstract: Interference is usually viewed as an obstacle to communication in wireless networks. This paper proposes a new strategy, compute-and-forward, that exploits interference to obtain significantly higher rates between users in a network. The key idea is that relays should decode linear functions of transmitted messages according to their observed channel coefficients rather than ignoring the interference as noise. After decoding these linear equations, the relays simply send them towards the destinations, which given enough equations, can recover their desired messages. The underlying codes are based on nested lattices whose algebraic structure ensures that integer combinations of codewords can be decoded reliably. Encoders map messages from a finite field to a lattice and decoders recover equations of lattice points which are then mapped back to equations over the finite field. This scheme is applicable even if the transmitters lack channel state information.

1,159 citations

Journal ArticleDOI
TL;DR: This paper offers a survey of the concept of Wireless Body Area Networks, focusing on some applications with special interest in patient monitoring and the communication in a WBAN and its positioning between the different technologies.
Abstract: The increasing use of wireless networks and the constant miniaturization of electrical devices has empowered the development of Wireless Body Area Networks (WBANs). In these networks various sensors are attached on clothing or on the body or even implanted under the skin. The wireless nature of the network and the wide variety of sensors offer numerous new, practical and innovative applications to improve health care and the Quality of Life. The sensors of a WBAN measure for example the heartbeat, the body temperature or record a prolonged electrocardiogram. Using a WBAN, the patient experiences a greater physical mobility and is no longer compelled to stay in the hospital. This paper offers a survey of the concept of Wireless Body Area Networks. First, we focus on some applications with special interest in patient monitoring. Then the communication in a WBAN and its positioning between the different technologies is discussed. An overview of the current research on the physical layer, existing MAC and network protocols is given. Further, cross layer and quality of service is discussed. As WBANs are placed on the human body and often transport private data, security is also considered. An overview of current and past projects is given. Finally, the open research issues and challenges are pointed out.

1,077 citations