scispace - formally typeset

Author

Arnaud Doucet

Bio: Arnaud Doucet is an academic researcher from University of Oxford. The author has contributed to research in topic(s): Particle filter & Markov chain Monte Carlo. The author has an hindex of 75, co-authored 386 publication(s) receiving 43388 citation(s). Previous affiliations of Arnaud Doucet include University of British Columbia & École nationale supérieure de l'électronique et de ses applications.
Papers
More filters

BookDOI
01 Jan 2001
TL;DR: This book presents the first comprehensive treatment of Monte Carlo techniques, including convergence results and applications to tracking, guidance, automated target recognition, aircraft navigation, robot navigation, econometrics, financial modeling, neural networks, optimal control, optimal filtering, communications, reinforcement learning, signal enhancement, model averaging and selection.
Abstract: Monte Carlo methods are revolutionizing the on-line analysis of data in fields as diverse as financial modeling, target tracking and computer vision. These methods, appearing under the names of bootstrap filters, condensation, optimal Monte Carlo filters, particle filters and survival of the fittest, have made it possible to solve numerically many complex, non-standard problems that were previously intractable. This book presents the first comprehensive treatment of these techniques, including convergence results and applications to tracking, guidance, automated target recognition, aircraft navigation, robot navigation, econometrics, financial modeling, neural networks, optimal control, optimal filtering, communications, reinforcement learning, signal enhancement, model averaging and selection, computer vision, semiconductor design, population biology, dynamic Bayesian networks, and time series analysis. This will be of great value to students, researchers and practitioners, who have some basic knowledge of probability. Arnaud Doucet received the Ph. D. degree from the University of Paris-XI Orsay in 1997. From 1998 to 2000, he conducted research at the Signal Processing Group of Cambridge University, UK. He is currently an assistant professor at the Department of Electrical Engineering of Melbourne University, Australia. His research interests include Bayesian statistics, dynamic models and Monte Carlo methods. Nando de Freitas obtained a Ph.D. degree in information engineering from Cambridge University in 1999. He is presently a research associate with the artificial intelligence group of the University of California at Berkeley. His main research interests are in Bayesian statistics and the application of on-line and batch Monte Carlo methods to machine learning. Neil Gordon obtained a Ph.D. in Statistics from Imperial College, University of London in 1993. He is with the Pattern and Information Processing group at the Defence Evaluation and Research Agency in the United Kingdom. His research interests are in time series, statistical data analysis, and pattern recognition with a particular emphasis on target tracking and missile guidance.

6,458 citations


Journal ArticleDOI
TL;DR: An overview of methods for sequential simulation from posterior distributions for discrete time dynamic models that are typically nonlinear and non-Gaussian, and how to incorporate local linearisation methods similar to those which have previously been employed in the deterministic filtering literature are shown.
Abstract: In this article, we present an overview of methods for sequential simulation from posterior distributions. These methods are of particular interest in Bayesian filtering for discrete time dynamic models that are typically nonlinear and non-Gaussian. A general importance sampling framework is developed that unifies many of the methods which have been proposed over the last few decades in several different scientific disciplines. Novel extensions to the existing methods are also proposed. We show in particular how to incorporate local linearisation methods similar to those which have previously been employed in the deterministic filtering literatures these lead to very effective importance distributions. Furthermore we describe a method which uses Rao-Blackwellisation in order to take advantage of the analytic structure present in some important classes of state-space models. In a final section we develop algorithms for prediction, smoothing and evaluation of the likelihood in dynamic models.

4,591 citations


Journal ArticleDOI
TL;DR: This purpose of this introductory paper is to introduce the Monte Carlo method with emphasis on probabilistic machine learning and review the main building blocks of modern Markov chain Monte Carlo simulation.
Abstract: This purpose of this introductory paper is threefold. First, it introduces the Monte Carlo method with emphasis on probabilistic machine learning. Second, it reviews the main building blocks of modern Markov chain Monte Carlo simulation, thereby providing and introduction to the remaining papers of this special issue. Lastly, it discusses new interesting research horizons.

2,292 citations


Book Chapter
Arnaud Doucet, Adam M. Johansen1Institutions (1)
01 Jan 2008
TL;DR: A complete, up-to-date survey of particle filtering methods as of 2008, including basic and advanced particle methods for filtering as well as smoothing.
Abstract: Optimal estimation problems for non-linear non-Gaussian state-space models do not typically admit analytic solutions. Since their introduction in 1993, particle filtering methods have become a very popular class of algorithms to solve these estimation problems numerically in an online manner, i.e. recursively as observations become available, and are now routinely used in fields as diverse as computer vision, econometrics, robotics and navigation. The objective of this tutorial is to provide a complete, up-to-date survey of this field as of 2008. Basic and advanced particle methods for filtering as well as smoothing are presented.

1,735 citations


Proceedings Article
01 Jan 2000
TL;DR: This paper proposes a new particle filter based on sequential importance sampling that outperforms standard particle filtering and other nonlinear filtering methods very substantially and is in agreement with the theoretical convergence proof for the algorithm.
Abstract: In this paper, we propose a new particle filter based on sequential importance sampling. The algorithm uses a bank of unscented filters to obtain the importance proposal distribution. This proposal has two very "nice" properties. Firstly, it makes efficient use of the latest available information and, secondly, it can have heavy tails. As a result, we find that the algorithm outperforms standard particle filtering and other nonlinear filtering methods very substantially. This experimental finding is in agreement with the theoretical convergence proof for the algorithm. The algorithm also includes resampling and (possibly) Markov chain Monte Carlo (MCMC) steps.

1,637 citations


Cited by
More filters

Journal ArticleDOI
TL;DR: Both optimal and suboptimal Bayesian algorithms for nonlinear/non-Gaussian tracking problems, with a focus on particle filters are reviewed.
Abstract: Increasingly, for many application areas, it is becoming important to include elements of nonlinearity and non-Gaussianity in order to model accurately the underlying dynamics of a physical system. Moreover, it is typically crucial to process data on-line as it arrives, both from the point of view of storage costs as well as for rapid adaptation to changing signal characteristics. In this paper, we review both optimal and suboptimal Bayesian algorithms for nonlinear/non-Gaussian tracking problems, with a focus on particle filters. Particle filters are sequential Monte Carlo methods based on point mass (or "particle") representations of probability densities, which can be applied to any state-space model and which generalize the traditional Kalman filtering methods. Several variants of the particle filter such as SIR, ASIR, and RPF are introduced within a generic framework of the sequential importance sampling (SIS) algorithm. These are discussed and compared with the standard EKF through an illustrative example.

10,977 citations


Christopher M. Bishop1Institutions (1)
01 Jan 2006
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations


Book
Yoshua Bengio1Institutions (1)
01 Jan 2009
TL;DR: The motivations and principles regarding learning algorithms for deep architectures, in particular those exploiting as building blocks unsupervised learning of single-layer modelssuch as Restricted Boltzmann Machines, used to construct deeper models such as Deep Belief Networks are discussed.
Abstract: Can machine learning deliver AI? Theoretical results, inspiration from the brain and cognition, as well as machine learning experiments suggest that in order to learn the kind of complicated functions that can represent high-level abstractions (e.g. in vision, language, and other AI-level tasks), one would need deep architectures. Deep architectures are composed of multiple levels of non-linear operations, such as in neural nets with many hidden layers, graphical models with many levels of latent variables, or in complicated propositional formulae re-using many sub-formulae. Each level of the architecture represents features at a different level of abstraction, defined as a composition of lower-level features. Searching the parameter space of deep architectures is a difficult task, but new algorithms have been discovered and a new sub-area has emerged in the machine learning community since 2006, following these discoveries. Learning algorithms such as those for Deep Belief Networks and other related unsupervised learning algorithms have recently been proposed to train deep architectures, yielding exciting results and beating the state-of-the-art in certain areas. Learning Deep Architectures for AI discusses the motivations for and principles of learning algorithms for deep architectures. By analyzing and comparing recent results with different learning algorithms for deep architectures, explanations for their success are proposed and discussed, highlighting challenges and suggesting avenues for future explorations in this area.

7,162 citations


Book
24 Aug 2012
TL;DR: This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach, and is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.
Abstract: Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach. The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package--PMTK (probabilistic modeling toolkit)--that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.

7,045 citations


BookDOI
01 Jan 2001
TL;DR: This book presents the first comprehensive treatment of Monte Carlo techniques, including convergence results and applications to tracking, guidance, automated target recognition, aircraft navigation, robot navigation, econometrics, financial modeling, neural networks, optimal control, optimal filtering, communications, reinforcement learning, signal enhancement, model averaging and selection.
Abstract: Monte Carlo methods are revolutionizing the on-line analysis of data in fields as diverse as financial modeling, target tracking and computer vision. These methods, appearing under the names of bootstrap filters, condensation, optimal Monte Carlo filters, particle filters and survival of the fittest, have made it possible to solve numerically many complex, non-standard problems that were previously intractable. This book presents the first comprehensive treatment of these techniques, including convergence results and applications to tracking, guidance, automated target recognition, aircraft navigation, robot navigation, econometrics, financial modeling, neural networks, optimal control, optimal filtering, communications, reinforcement learning, signal enhancement, model averaging and selection, computer vision, semiconductor design, population biology, dynamic Bayesian networks, and time series analysis. This will be of great value to students, researchers and practitioners, who have some basic knowledge of probability. Arnaud Doucet received the Ph. D. degree from the University of Paris-XI Orsay in 1997. From 1998 to 2000, he conducted research at the Signal Processing Group of Cambridge University, UK. He is currently an assistant professor at the Department of Electrical Engineering of Melbourne University, Australia. His research interests include Bayesian statistics, dynamic models and Monte Carlo methods. Nando de Freitas obtained a Ph.D. degree in information engineering from Cambridge University in 1999. He is presently a research associate with the artificial intelligence group of the University of California at Berkeley. His main research interests are in Bayesian statistics and the application of on-line and batch Monte Carlo methods to machine learning. Neil Gordon obtained a Ph.D. in Statistics from Imperial College, University of London in 1993. He is with the Pattern and Information Processing group at the Defence Evaluation and Research Agency in the United Kingdom. His research interests are in time series, statistical data analysis, and pattern recognition with a particular emphasis on target tracking and missile guidance.

6,458 citations


Network Information
Related Authors (5)
Christophe Andrieu

160 papers, 16.4K citations

80% related
Simon J. Godsill

394 papers, 16K citations

73% related
Vikram Krishnamurthy

596 papers, 10.5K citations

60% related
Yee Whye Teh

326 papers, 36.1K citations

59% related
Nando de Freitas

226 papers, 36.3K citations

58% related
Performance
Metrics

Author's H-index: 75

No. of papers from the Author in previous years
YearPapers
202126
202012
201923
201816
201714
20165