scispace - formally typeset
Search or ask a question
Author

Arndt Brachat

Bio: Arndt Brachat is an academic researcher from University of Basel. The author has contributed to research in topics: Microtubule & Saccharomyces cerevisiae. The author has an hindex of 9, co-authored 9 publications receiving 8567 citations.

Papers
More filters
Journal ArticleDOI
01 Jul 1998-Yeast
TL;DR: A new set of plasmids that serve as templates for the PCR synthesis of fragments that allow a variety of gene modifications that should further facilitate the rapid analysis of gene function in S. cerevisiae.
Abstract: An important recent advance in the functional analysis of Saccharomyces cerevisiae genes is the development of the one-step PCR-mediated technique for deletion and modification of chromosomal genes This method allows very rapid gene manipulations without requiring plasmid clones of the gene of interest We describe here a new set of plasmids that serve as templates for the PCR synthesis of fragments that allow a variety of gene modifications Using as selectable marker the S cerevisiae TRP1 gene or modules containing the heterologous Schizosaccharomyces pombe his5 + or Escherichia coli kan r gene, these plasmids allow gene deletion, gene overexpression (using the regulatable GAL1 promoter), C- or N-terminal protein tagging [with GFP(S65T), GST, or the 3HA or 13Myc epitope], and partial N- or C-terminal deletions (with or without concomitant protein tagging) Because of the modular nature of the plasmids, they allow eYcient and economical use of a small number of PCR primers for a wide variety of gene manipulations Thus, these plasmids should further facilitate the rapid analysis of gene function in S cerevisiae ? 1998 John Wiley & Sons, Ltd

5,301 citations

Journal ArticleDOI
01 Dec 1994-Yeast
TL;DR: A dominant resistance module, for selection of S. cerevisiae transformants, which entirely consists of heterologous DNA is constructed and tested, and some kanMX modules are flanked by 470 bp direct repeats, promoting in vivo excision with frequencies of 10–3–10–4.
Abstract: We have constructed and tested a dominant resistance module, for selection of S. cerevisiae transformants, which entirely consists of heterologous DNA. This kanMX module contains the known kanr open reading-frame of the E. coli transposon Tn903 fused to transcriptional and translational control sequences of the TEF gene of the filamentous fungus Ashbya gossypii. This hybrid module permits efficient selection of transformants resistant against geneticin (G418). We also constructed a lacZMT reporter module in which the open reading-frame of the E. coli lacZ gene (lacking the first 9 codons) is fused at its 3' end to the S. cerevisiae ADH1 terminator. KanMX and the lacZMT module, or both modules together, were cloned in the center of a new multiple cloning sequence comprising 18 unique restriction sites flanked by Not I sites. Using the double module for constructions of in-frame substitutions of genes, only one transformation experiment is necessary to test the activity of the promotor and to search for phenotypes due to inactivation of this gene. To allow for repeated use of the G418 selection some kanMX modules are flanked by 470 bp direct repeats, promoting in vivo excision with frequencies of 10(-3)-10(-4). The 1.4 kb kanMX module was also shown to be very useful for PCR based gene disruptions. In an experiment in which a gene disruption was done with DNA molecules carrying PCR-added terminal sequences of only 35 bases homology to each target site, all twelve tested geneticin-resistant colonies carried the correctly integrated kanMX module.

2,727 citations

Journal ArticleDOI
15 Sep 1997-Yeast
TL;DR: GFP reporters consist of wild‐type GFP or GFP‐S65T coding sequences, lacking the ATG, fused to the S. cerevisiae ADH1 terminator and PCR‐synthesized 2·4 kb‐long double modules flanked by 40 bp‐long guide sequences were successfully targeted to the carboxy‐terminus of a number of S. Cerevisiae genes.
Abstract: We have fused the open reading frames of his3-complementing genes from Saccharomyces kluyveri and Schizosac-charomyces pombe to the strong TEF gene promotor of the filamentous fungus Ashbya gossypii. Both chimeric modules and the cognate S. kluyveri HIS3 gene were tested in transformations of his3 S. cerevisiae strains using PCR fragments flanked by 40 bp target guide sequences. The 1.4 kb chimeric Sz. pombe module (HIS3MX6) performed best. With less than 5% incorrectly targeted transformants, it functions as reliably as the widely used geniticin resistance marker kanMX. The rare false-positive His+ transformants seem to be due to non-homologous recombination rather than to gene conversion of the mutated endogenous his3 allele. We also cloned the green fluorescent protein gene from Aequorea victoria into our pFA-plasmids with HIS3MX6 and kanMX markers. The 0.9 kb GFP reporters consist of wild-type GFP or GFP-S65T coding sequences, lacking the ATG, fused to the S. cerevisiae ADH1 terminator. PCR-synthesized 2.4 kb-long double modules flanked by 40-45 bp-long guide sequences were successfully targeted to the carboxy-terminus of a number of S. cerevisiae genes. We could estimate that only about 10% of the transformants carried inactivating mutations in the GFP reporter.

623 citations

Journal ArticleDOI
TL;DR: Using an approach combining genetic and biochemical techniques, it is shown that the assembly of the lipid-linked core oligosaccharide in the lumen of the endoplasmic reticulum occurs in a stepwise fashion.
Abstract: The core oligosaccharide Glc3Man9GlcNAc2 is assembled at the membrane of the endoplasmic reticulum on the lipid carrier dolichyl pyrophosphate and transferred to selected asparagine residues of nascent polypeptide chains. This transfer is catalyzed by the oligosaccharyl transferase complex. Based on the synthetic phenotype of the oligosaccharyl transferase mutation wbp1 in combination with a deficiency in the assembly pathway of the oligosaccharide in Saccharomyces cerevisiae, we have identified the novel ALG9 gene. We conclude that this locus encodes a putative mannosyl transferase because deletion of the gene led to accumulation of lipid-linked Man6GlcNAc2 in vivo and to hypoglycosylation of secreted proteins. Using an approach combining genetic and biochemical techniques, we show that the assembly of the lipid-linked core oligosaccharide in the lumen of the endoplasmic reticulum occurs in a stepwise fashion.

106 citations

Journal ArticleDOI
TL;DR: Time-lapse microscopy of cnm67Delta1 cells with green fluorescent protein (GFP)-labeled nuclei indicated that CNM67 is dispensable for nuclear migration (congression) and nuclear fusion during conjugation, in agreement with previous data, indicating that cytoplasmic microtubules are organized by the half-bridge during mating.
Abstract: Cnm67p, a novel yeast protein, localizes to the microtubule organizing center, the spindle pole body (SPB). Deletion of CNM67 (YNL225c) frequently results in spindle misorientation and impaired nuclear migration, leading to the generation of bi- and multinucleated cells (40%). Electron microscopy indicated that CNM67 is required for proper formation of the SPB outer plaque, a structure that nucleates cytoplasmic (astral) microtubules. Interestingly, cytoplasmic microtubules that are essential for spindle orientation and nuclear migration are still present in cnm67Delta1 cells that lack a detectable outer plaque. These microtubules are attached to the SPB half- bridge throughout the cell cycle. This interaction presumably allows for low-efficiency nuclear migration and thus provides a rescue mechanism in the absence of a functional outer plaque. Although CNM67 is not strictly required for mitosis, it is essential for sporulation. Time-lapse microscopy of cnm67Delta1 cells with green fluorescent protein (GFP)-labeled nuclei indicated that CNM67 is dispensable for nuclear migration (congression) and nuclear fusion during conjugation. This is in agreement with previous data, indicating that cytoplasmic microtubules are organized by the half-bridge during mating.

72 citations


Cited by
More filters
Journal ArticleDOI
01 Jul 1998-Yeast
TL;DR: A new set of plasmids that serve as templates for the PCR synthesis of fragments that allow a variety of gene modifications that should further facilitate the rapid analysis of gene function in S. cerevisiae.
Abstract: An important recent advance in the functional analysis of Saccharomyces cerevisiae genes is the development of the one-step PCR-mediated technique for deletion and modification of chromosomal genes This method allows very rapid gene manipulations without requiring plasmid clones of the gene of interest We describe here a new set of plasmids that serve as templates for the PCR synthesis of fragments that allow a variety of gene modifications Using as selectable marker the S cerevisiae TRP1 gene or modules containing the heterologous Schizosaccharomyces pombe his5 + or Escherichia coli kan r gene, these plasmids allow gene deletion, gene overexpression (using the regulatable GAL1 promoter), C- or N-terminal protein tagging [with GFP(S65T), GST, or the 3HA or 13Myc epitope], and partial N- or C-terminal deletions (with or without concomitant protein tagging) Because of the modular nature of the plasmids, they allow eYcient and economical use of a small number of PCR primers for a wide variety of gene manipulations Thus, these plasmids should further facilitate the rapid analysis of gene function in S cerevisiae ? 1998 John Wiley & Sons, Ltd

5,301 citations

Journal ArticleDOI
25 Jul 2002-Nature
TL;DR: It is shown that previously known and new genes are necessary for optimal growth under six well-studied conditions: high salt, sorbitol, galactose, pH 8, minimal medium and nystatin treatment, and less than 7% of genes that exhibit a significant increase in messenger RNA expression are also required for optimal Growth in four of the tested conditions.
Abstract: Determining the effect of gene deletion is a fundamental approach to understanding gene function. Conventional genetic screens exhibit biases, and genes contributing to a phenotype are often missed. We systematically constructed a nearly complete collection of gene-deletion mutants (96% of annotated open reading frames, or ORFs) of the yeast Saccharomyces cerevisiae. DNA sequences dubbed 'molecular bar codes' uniquely identify each strain, enabling their growth to be analysed in parallel and the fitness contribution of each gene to be quantitatively assessed by hybridization to high-density oligonucleotide arrays. We show that previously known and new genes are necessary for optimal growth under six well-studied conditions: high salt, sorbitol, galactose, pH 8, minimal medium and nystatin treatment. Less than 7% of genes that exhibit a significant increase in messenger RNA expression are also required for optimal growth in four of the tested conditions. Our results validate the yeast gene-deletion collection as a valuable resource for functional genomics.

4,328 citations

Journal ArticleDOI
16 Oct 2003-Nature
TL;DR: The construction and analysis of a collection of yeast strains expressing full-length, chromosomally tagged green fluorescent protein fusion proteins helps reveal the logic of transcriptional co-regulation, and provides a comprehensive view of interactions within and between organelles in eukaryotic cells.
Abstract: A fundamental goal of cell biology is to define the functions of proteins in the context of compartments that organize them in the cellular environment. Here we describe the construction and analysis of a collection of yeast strains expressing full-length, chromosomally tagged green fluorescent protein fusion proteins. We classify these proteins, representing 75% of the yeast proteome, into 22 distinct subcellular localization categories, and provide localization information for 70% of previously unlocalized proteins. Analysis of this high-resolution, high-coverage localization data set in the context of transcriptional, genetic, and protein-protein interaction data helps reveal the logic of transcriptional co-regulation, and provides a comprehensive view of interactions within and between organelles in eukaryotic cells.

4,310 citations

Journal ArticleDOI
25 Oct 1996-Science
TL;DR: The genome of the yeast Saccharomyces cerevisiae has been completely sequenced through a worldwide collaboration and provides information about the higher order organization of yeast's 16 chromosomes and allows some insight into their evolutionary history.
Abstract: The genome of the yeast Saccharomyces cerevisiae has been completely sequenced through a worldwide collaboration. The sequence of 12,068 kilobases defines 5885 potential protein-encoding genes, approximately 140 genes specifying ribosomal RNA, 40 genes for small nuclear RNA molecules, and 275 transfer RNA genes. In addition, the complete sequence provides information about the higher order organization of yeast's 16 chromosomes and allows some insight into their evolutionary history. The genome shows a considerable amount of apparent genetic redundancy, and one of the major problems to be tackled during the next stage of the yeast genome project is to elucidate the biological functions of all of these genes.

4,254 citations

Journal ArticleDOI
06 Aug 1999-Science
TL;DR: A total of 6925 Saccharomyces cerevisiae strains were constructed, by a high-throughput strategy, each with a precise deletion of one of 2026 ORFs (more than one-third of the ORFs in the genome), finding that 17 percent were essential for viability in rich medium.
Abstract: The functions of many open reading frames (ORFs) identified in genome-sequencing projects are unknown. New, whole-genome approaches are required to systematically determine their function. A total of 6925 Saccharomyces cerevisiae strains were constructed, by a high-throughput strategy, each with a precise deletion of one of 2026 ORFs (more than one-third of the ORFs in the genome). Of the deleted ORFs, 17 percent were essential for viability in rich medium. The phenotypes of more than 500 deletion strains were assayed in parallel. Of the deletion strains, 40 percent showed quantitative growth defects in either rich or minimal medium.

4,051 citations