scispace - formally typeset
Search or ask a question
Author

Arnold H. Kritz

Bio: Arnold H. Kritz is an academic researcher from Lehigh University. The author has contributed to research in topics: Tokamak & Pedestal. The author has an hindex of 21, co-authored 62 publications receiving 2697 citations. Previous affiliations of Arnold H. Kritz include Yale University & Hunter College.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors compared the performance of gyrokinetic and gyrofluid simulations of ion-temperature gradient (ITG)instability and turbulence in tokamak plasmas as well as some tokak plasma thermal transportmodels.
Abstract: The predictions of gyrokinetic and gyrofluid simulations of ion-temperature-gradient(ITG)instability and turbulence in tokamak plasmas as well as some tokamak plasma thermal transportmodels, which have been widely used for predicting the performance of the proposed International Thermonuclear Experimental Reactor (ITER) tokamak [Plasma Physics and Controlled Nuclear Fusion Research, 1996 (International Atomic Energy Agency, Vienna, 1997), Vol. 1, p. 3], are compared. These comparisons provide information on effects of differences in the physics content of the various models and on the fusion-relevant figures of merit of plasma performance predicted by the models. Many of the comparisons are undertaken for a simplified plasma model and geometry which is an idealization of the plasma conditions and geometry in a Doublet III-D [Plasma Physics and Controlled Nuclear Fusion Research, 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. 1, p. 159] high confinement (H-mode) experiment. Most of the models show good agreements in their predictions and assumptions for the linear growth rates and frequencies. There are some differences associated with different equilibria. However, there are significant differences in the transport levels between the models. The causes of some of the differences are examined in some detail, with particular attention to numerical convergence in the turbulence simulations (with respect to simulation mesh size, system size and, for particle-based simulations, the particle number). The implications for predictions of fusion plasma performance are also discussed.

953 citations

Journal ArticleDOI
TL;DR: The NUBEAM module as mentioned in this paper is a comprehensive computational model for Neutral Beam Injection (NBI) in tokamaks, which is used to compute power deposition, driven current, momentum transfer, fueling, and other profiles.

636 citations

Journal ArticleDOI
TL;DR: In this paper, the Multi-Mode Model has been used to predict the temperature and density profiles in tokamaks using a fixed combination of theory-based transport models, called the MultiMode Model, which is used in the BALDUR [C. E. Singer et al., Comput. Phys. Commun. 49, 275 (1988)] transport simulation code.
Abstract: A fixed combination of theory-based transport models, called the Multi-Mode Model, is used in the BALDUR [C. E. Singer et al., Comput. Phys. Commun. 49, 275 (1988)] transport simulation code to predict the temperature and density profiles in tokamaks. The choice of the Multi-Mode Model has been guided by the philosophy of using the best transport theories available for the various modes of turbulence that dominate in different parts of the plasma. The Multi-Mode model has been found to provide a better match to temperature and density profiles than any of the other theory-based models currently available. A description and partial derivation of the Multi-Mode Model is presented, together with three new examples of simulations of the Tokamak Fusion Test Reactor (TFTR) [K. M. McGuire et al., Phys. Plasmas 2, 2176 (1995)]. The first simulation shows the strong effect of recycling on the ion temperature profile in TFTR supershot simulations. The second simulation explores the effect of a plasma current ramp—where the plasma energy content changes slowly on the energy confinement time scale. The third simulation shows that the Multi-Mode Model reproduces the experimentally measured profiles when tritium is used as the hydrogenic isotope in L-mode (low confinement mode) plasmas.

151 citations

Journal ArticleDOI
TL;DR: In this article, a prediction model for the temperature at the top of a pedestal at the edge of a high-confinement mode H-mode plasmas was developed.
Abstract: Predictive models are developed for the temperature at the top at the edge of type 1 ELMy (edge localized mode) H-mode (high-confinement mode) plasmas. Theory-motivated models are used for the pedestal width and pressure gradient, while the pedestal density is obtained from experimental data in this study. The pedestal pressure gradient is assumed to be limited by the ballooning mode instability and is expressed in terms of the magnetic shear and geometrical factors. The effect of the bootstrap current, which reduces the magnetic shear in the steep pressure gradient region at the edge of the H-mode plasma, is included in the determination of the magnetic shear. Approaches for calculating the magnetic shear, combined with proposed models for the pedestal width, are used to determine the pedestal temperature. The computed pedestal temperatures are compared with more than 500 measured pedestal temperatures for type 1 ELMy H-mode discharges in four tokamaks. Some of the uncertainties in these results are disc...

95 citations

Journal ArticleDOI
TL;DR: In this paper, a time-dependent integrated predictive modeling is carried out using the PTRANSP code to predict fusion power and parameters such as alpha particle density and pressure in ITER H-mode plasmas.
Abstract: Time-dependent integrated predictive modelling is carried out using the PTRANSP code to predict fusion power and parameters such as alpha particle density and pressure in ITER H-mode plasmas. Auxiliary heating by negative ion neutralbeaminjectionandion-cyclotronheatingofHe 3 minorityionsaremodelled,andtheGLF23transportmodelis used in the prediction of the evolution of plasma temperature profiles. Effects of beam steering, beam torque, plasma rotation, beam current drive, pedestal temperatures, sawtooth oscillations, magnetic diffusion and accumulation of He ash are treated self-consistently. Variations in assumptions associated with physics uncertainties for standard base-line DT H-mode plasmas (with Ip = 15MA, BTF = 5.3T and Greenwald fraction = 0.86) lead to a range of predictions for DT fusion power PDT and quasi-steady state fusion QDT (≡PDT/Paux). Typical predictions assuming Paux = 50‐53MW yield PDT = 250‐720MW and QDT = 5‐14. In some cases where Paux is ramped down or shut off after initial flat-top conditions, quasi-steady QDT can be considerably higher, even infinite. Adverse physics assumptions such as the existence of an inward pinch of the helium ash and an ash recycling coefficient approaching unity lead to very low values for PDT. Alternative scenarios with different heating and reduced performance regimes are also considered including plasmas with only H or D isotopes, DT plasmas with toroidal field reduced 10% or 20% and discharges with reduced beam voltage. In full-performance D-only discharges, tritium burn up is predicted to generate central tritium densities up to 10 16 m −3 and DT neutron rates up to 5 ×10 16 s −1 , compared with the DD neutron rates of 6 × 10 17 s −1 . Predictions with the toroidal field reduced 10% or 20% below the planned 5.3T and keeping the same q98, Greenwald fraction and βn indicate that the fusion yield PDT and QDT will be lower by about a factor of two (scaling as B 3.5 ).

79 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A comprehensive review of zonal flow phenomena in plasmas is presented in this article, where the focus is on zonal flows generated by drift waves and the back-interaction of ZF on the drift waves, and various feedback loops by which the system regulates and organizes itself.
Abstract: A comprehensive review of zonal flow phenomena in plasmas is presented. While the emphasis is on zonal flows in laboratory plasmas, planetary zonal flows are discussed as well. The review presents the status of theory, numerical simulation and experiments relevant to zonal flows. The emphasis is on developing an integrated understanding of the dynamics of drift wave–zonal flow turbulence by combining detailed studies of the generation of zonal flows by drift waves, the back-interaction of zonal flows on the drift waves, and the various feedback loops by which the system regulates and organizes itself. The implications of zonal flow phenomena for confinement in, and the phenomena of fusion devices are discussed. Special attention is given to the comparison of experiment with theory and to identifying directions for progress in future research.

1,739 citations

Journal ArticleDOI
TL;DR: A review of recent advances in the area of MHD stability and disruptions, since the publication of the 1999 ITER Physics Basis document (1999 Nucl. Fusion 39 2137-2664), is reviewed in this paper.
Abstract: Progress in the area of MHD stability and disruptions, since the publication of the 1999 ITER Physics Basis document (1999 Nucl. Fusion 39 2137-2664), is reviewed. Recent theoretical and experimental research has made important advances in both understanding and control of MHD stability in tokamak plasmas. Sawteeth are anticipated in the ITER baseline ELMy H-mode scenario, but the tools exist to avoid or control them through localized current drive or fast ion generation. Active control of other MHD instabilities will most likely be also required in ITER. Extrapolation from existing experiments indicates that stabilization of neoclassical tearing modes by highly localized feedback-controlled current drive should be possible in ITER. Resistive wall modes are a key issue for advanced scenarios, but again, existing experiments indicate that these modes can be stabilized by a combination of plasma rotation and direct feedback control with non-axisymmetric coils. Reduction of error fields is a requirement for avoiding non-rotating magnetic island formation and for maintaining plasma rotation to help stabilize resistive wall modes. Recent experiments have shown the feasibility of reducing error fields to an acceptable level by means of non-axisymmetric coils, possibly controlled by feedback. The MHD stability limits associated with advanced scenarios are becoming well understood theoretically, and can be extended by tailoring of the pressure and current density profiles as well as by other techniques mentioned here. There have been significant advances also in the control of disruptions, most notably by injection of massive quantities of gas, leading to reduced halo current fractions and a larger fraction of the total thermal and magnetic energy dissipated by radiation. These advances in disruption control are supported by the development of means to predict impending disruption, most notably using neural networks. In addition to these advances in means to control or ameliorate the consequences of MHD instabilities, there has been significant progress in improving physics understanding and modelling. This progress has been in areas including the mechanisms governing NTM growth and seeding, in understanding the damping controlling RWM stability and in modelling RWM feedback schemes. For disruptions there has been continued progress on the instability mechanisms that underlie various classes of disruption, on the detailed modelling of halo currents and forces and in refining predictions of quench rates and disruption power loads. Overall the studies reviewed in this chapter demonstrate that MHD instabilities can be controlled, avoided or ameliorated to the extent that they should not compromise ITER operation, though they will necessarily impose a range of constraints.

1,051 citations

Journal ArticleDOI
TL;DR: The nonlinear gyrokinetic equations play a fundamental role in our understanding of the long-time behavior of strongly magnetized plasmas as mentioned in this paper, and they have been used to describe the turbulent evolution of low-frequency electromagnetic fluctuations in a nonuniform magnetization with arbitrary magnetic geometry.
Abstract: Nonlinear gyrokinetic equations play a fundamental role in our understanding of the long-time behavior of strongly magnetized plasmas. The foundations of modern nonlinear gyrokinetic the- ory are based on three important pillars: (1) a gyrokinetic Vlasov equation written in terms of a gyrocenter Hamiltonian with quadratic low-frequency ponderomotive-like terms; (2) a set of gyrokinetic Maxwell (Poisson-Ampere) equations written in terms of the gyrocenter Vlasov dis- tribution that contain low-frequency polarization (Poisson) and magnetization (Ampere) terms derived from the quadratic nonlinearities in the gyrocenter Hamiltonian; and (3) an exact energy conservationlaw for the gyrokineticVlasov-Maxwell equations that includes all the relevant linear and nonlinear coupling terms. The foundations of nonlinear gyrokinetic theory are reviewed with an emphasis on the rigorous applications of Lagrangian and Hamiltonian Lie-transform perturba- tion methods used in the variationalderivationof nonlineargyrokineticVlasov-Maxwell equations. The physical motivations and applications of the nonlinear gyrokinetic equations, which describe the turbulent evolution of low-frequency electromagnetic fluctuations in a nonuniform magnetized plasmas with arbitrary magnetic geometry, are also discussed.

1,010 citations

Journal ArticleDOI
TL;DR: In this paper, the authors compared the performance of gyrokinetic and gyrofluid simulations of ion-temperature gradient (ITG)instability and turbulence in tokamak plasmas as well as some tokak plasma thermal transportmodels.
Abstract: The predictions of gyrokinetic and gyrofluid simulations of ion-temperature-gradient(ITG)instability and turbulence in tokamak plasmas as well as some tokamak plasma thermal transportmodels, which have been widely used for predicting the performance of the proposed International Thermonuclear Experimental Reactor (ITER) tokamak [Plasma Physics and Controlled Nuclear Fusion Research, 1996 (International Atomic Energy Agency, Vienna, 1997), Vol. 1, p. 3], are compared. These comparisons provide information on effects of differences in the physics content of the various models and on the fusion-relevant figures of merit of plasma performance predicted by the models. Many of the comparisons are undertaken for a simplified plasma model and geometry which is an idealization of the plasma conditions and geometry in a Doublet III-D [Plasma Physics and Controlled Nuclear Fusion Research, 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. 1, p. 159] high confinement (H-mode) experiment. Most of the models show good agreements in their predictions and assumptions for the linear growth rates and frequencies. There are some differences associated with different equilibria. However, there are significant differences in the transport levels between the models. The causes of some of the differences are examined in some detail, with particular attention to numerical convergence in the turbulence simulations (with respect to simulation mesh size, system size and, for particle-based simulations, the particle number). The implications for predictions of fusion plasma performance are also discussed.

953 citations

Journal ArticleDOI
TL;DR: In this article, collisionless electron-temperature-gradient-driven (ETG) turbulence in toroidal geometry is studied via nonlinear numerical simulations via two massively parallel, fully gyrokinetic Vlasov codes.
Abstract: Collisionless electron-temperature-gradient-driven (ETG) turbulence in toroidal geometry is studied via nonlinear numerical simulations To this aim, two massively parallel, fully gyrokinetic Vlasov codes are used, both including electromagnetic effects Somewhat surprisingly, and unlike in the analogous case of ion-temperature-gradient-driven (ITG) turbulence, we find that the turbulent electron heat flux is significantly underpredicted by simple mixing length estimates in a certain parameter regime (ŝ∼1, low α) This observation is directly linked to the presence of radially highly elongated vortices (“streamers”) which lead to very effective cross-field transport The simulations therefore indicate that ETG turbulence is likely to be relevant to magnetic confinement fusion experiments

946 citations