scispace - formally typeset
Search or ask a question
Author

Arnold L. Demain

Bio: Arnold L. Demain is an academic researcher from Drew University. The author has contributed to research in topics: Streptomyces clavuligerus & Clostridium thermocellum. The author has an hindex of 66, co-authored 424 publications receiving 20140 citations. Previous affiliations of Arnold L. Demain include Massachusetts Institute of Technology & Merck & Co..


Papers
More filters
Journal ArticleDOI
TL;DR: The most popular system for producing recombinant mammalian glycosylated proteins is that of mammalian cells while transgenic plants such as Arabidopsis thaliana and others can generate many recombinant proteins.

894 citations

Journal ArticleDOI
TL;DR: The need for such a process, the cellulases of clostridia, their presence in extracellular complexes or organelles (the cellulosomes), the binding of the cellulosome to cellulose and to the cell surface, cellulase genetics, regulation of their synthesis, cocultures, ethanol tolerance, and metabolic pathway engineering for maximizing ethanol yield are discussed.
Abstract: Biomass conversion to ethanol as a liquid fuel by the thermophilic and anaerobic clostridia offers a potential partial solution to the problem of the world's dependence on petroleum for energy. Coculture of a cellulolytic strain and a saccharolytic strain of Clostridium on agricultural resources, as well as on urban and industrial cellulosic wastes, is a promising approach to an alternate energy source from an economic viewpoint. This review discusses the need for such a process, the cellulases of clostridia, their presence in extracellular complexes or organelles (the cellulosomes), the binding of the cellulosomes to cellulose and to the cell surface, cellulase genetics, regulation of their synthesis, cocultures, ethanol tolerance, and metabolic pathway engineering for maximizing ethanol yield.

888 citations

Book
01 Jan 1999
TL;DR: The culture The process Strain Improvement Immobilization and Cell Culture Biochemical Engineering Special Topics as discussed by the authors The culture the process strain improvement Immobilisation and cell culture Biochemical engineering
Abstract: The Culture The Process Strain Improvement Immobilization and Cell Culture Biochemical Engineering Special Topics

882 citations

Journal ArticleDOI
TL;DR: This review centers on these beneficial secondary metabolites, the discovery of which goes back 80 years to the time when penicillin was discovered by Alexander Fleming.
Abstract: Microbes have made a phenomenal contribution to the health and well-being of people throughout the world. In addition to producing many primary metabolites, such as amino acids, vitamins and nucleotides, they are capable of making secondary metabolites, which constitute half of the pharmaceuticals on the market today and provide agriculture with many essential products. This review centers on these beneficial secondary metabolites, the discovery of which goes back 80 years to the time when penicillin was discovered by Alexander Fleming.

852 citations

Journal ArticleDOI
16 Jan 2014
TL;DR: Microbial diversity and modern molecular techniques are being used to discover new microbial enzymes whose catalytic properties can be improved/modified by different strategies based on rational, semi-rational and random directed evolution.
Abstract: Microbial enzymes are of great importance in the development of industrial bioprocesses. Current applications are focused on many different markets including pulp and paper, leather, detergents and textiles, pharmaceuticals, chemical, food and beverages, biofuels, animal feed and personal care, among others. Today there is a need for new, improved or/and more versatile enzymes in order to develop more novel, sustainable and economically competitive production processes. Microbial diversity and modern molecular techniques, such as metagenomics and genomics, are being used to discover new microbial enzymes whose catalytic properties can be improved/modified by different strategies based on rational, semi-rational and random directed evolution. Most industrial enzymes are recombinant forms produced in bacteria and fungi.

568 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A concluding discussion identifies unresolved issues pertaining to microbial cellulose utilization, suggests approaches by which such issues might be resolved, and contrasts a microbially oriented cellulose hydrolysis paradigm to the more conventional enzymatically oriented paradigm in both fundamental and applied contexts.
Abstract: Fundamental features of microbial cellulose utilization are examined at successively higher levels of aggregation encompassing the structure and composition of cellulosic biomass, taxonomic diversity, cellulase enzyme systems, molecular biology of cellulase enzymes, physiology of cellulolytic microorganisms, ecological aspects of cellulase-degrading communities, and rate-limiting factors in nature. The methodological basis for studying microbial cellulose utilization is considered relative to quantification of cells and enzymes in the presence of solid substrates as well as apparatus and analysis for cellulose-grown continuous cultures. Quantitative description of cellulose hydrolysis is addressed with respect to adsorption of cellulase enzymes, rates of enzymatic hydrolysis, bioenergetics of microbial cellulose utilization, kinetics of microbial cellulose utilization, and contrasting features compared to soluble substrate kinetics. A biological perspective on processing cellulosic biomass is presented, including features of pretreated substrates and alternative process configurations. Organism development is considered for "consolidated bioprocessing" (CBP), in which the production of cellulolytic enzymes, hydrolysis of biomass, and fermentation of resulting sugars to desired products occur in one step. Two organism development strategies for CBP are examined: (i) improve product yield and tolerance in microorganisms able to utilize cellulose, or (ii) express a heterologous system for cellulose hydrolysis and utilization in microorganisms that exhibit high product yield and tolerance. A concluding discussion identifies unresolved issues pertaining to microbial cellulose utilization, suggests approaches by which such issues might be resolved, and contrasts a microbially oriented cellulose hydrolysis paradigm to the more conventional enzymatically oriented paradigm in both fundamental and applied contexts.

4,769 citations

Journal ArticleDOI
TL;DR: A review of antibiotic resistance development over the past half-century can be found in this article, with the oft-restated conclusion that it is time to act and to restore the therapeutic applications of antibiotics.
Abstract: Antibiotics have always been considered one of the wonder discoveries of the 20th century. This is true, but the real wonder is the rise of antibiotic resistance in hospitals, communities, and the environment concomitant with their use. The extraordinary genetic capacities of microbes have benefitted from man's overuse of antibiotics to exploit every source of resistance genes and every means of horizontal gene transmission to develop multiple mechanisms of resistance for each and every antibiotic introduced into practice clinically, agriculturally, or otherwise. This review presents the salient aspects of antibiotic resistance development over the past half-century, with the oft-restated conclusion that it is time to act. To achieve complete restitution of therapeutic applications of antibiotics, there is a need for more information on the role of environmental microbiomes in the rise of antibiotic resistance. In particular, creative approaches to the discovery of novel antibiotics and their expedited and controlled introduction to therapy are obligatory.

4,364 citations

Journal ArticleDOI
TL;DR: A collection of 267 strains, representing many of the principal biotypes among aerobic pseudomonads, has been subjected to detailed study, with particular emphasis on biochemical, physiological and nutritional characters.
Abstract: SUMMARY A collection of 267 strains, representing many of the principal biotypes among aerobic pseudomonads, has been subjected to detailed study, with particular emphasis on biochemical, physiological and nutritional characters. A total of 146 different organic compounds were tested for their ability to serve as sources of carbon and energy. Other characters that were studied included : production of extracellular hydrolases; nitrogen sources and growth factor requirements H-chemolithotrophy; denitrifying ability; pigment production; ability to accumulate poly-p-hydroxybutyrate as a cellular reserve material; biochemical mechanisms of aromatic ring cleavage; and nature of the aerobic electron transport system. The resultant data have revealed many hitherto unrecognized characters of taxonomic significance. As a consequence, it has become possible to recognize among the biotypes examined a limited number of species which can be readily and clearly distinguished from one another by multiple, unrelated phenotypic differences.

2,814 citations

Journal ArticleDOI
TL;DR: The short history, specific features and future prospects of research of microbial metabolites, including antibiotics and other bioactive metabolites, are summarized.
Abstract: The short history, specific features and future prospects of research of microbial metabolites, including antibiotics and other bioactive metabolites, are summarized. The microbial origin, diversity of producing species, functions and various bioactivities of metabolites, unique features of their chemical structures are discussed, mainly on the basis of statistical data. The possible numbers of metabolites may be discovered in the future, the problems of dereplication of newly isolated compounds as well as the new trends and prospects of the research are also discussed.

2,706 citations

Journal ArticleDOI
TL;DR: A review of second generation biodiesel production systems using microalgae can be found in this paper, where the main advantages of second-generation microalgal systems are that they: (1) have a higher photon conversion efficiency (as evidenced by increased biomass yields per hectare): (2) can be harvested batch-wise nearly all-year-round, providing a reliable and continuous supply of oil: (3) can utilize salt and waste water streams, thereby greatly reducing freshwater use: (4) can couple CO2-neutral fuel production with CO2 sequestration: (
Abstract: The use of fossil fuels is now widely accepted as unsustainable due to depleting resources and the accumulation of greenhouse gases in the environment that have already exceeded the “dangerously high” threshold of 450 ppm CO2-e. To achieve environmental and economic sustainability, fuel production processes are required that are not only renewable, but also capable of sequestering atmospheric CO2. Currently, nearly all renewable energy sources (e.g. hydroelectric, solar, wind, tidal, geothermal) target the electricity market, while fuels make up a much larger share of the global energy demand (∼66%). Biofuels are therefore rapidly being developed. Second generation microalgal systems have the advantage that they can produce a wide range of feedstocks for the production of biodiesel, bioethanol, biomethane and biohydrogen. Biodiesel is currently produced from oil synthesized by conventional fuel crops that harvest the sun’s energy and store it as chemical energy. This presents a route for renewable and carbon-neutral fuel production. However, current supplies from oil crops and animal fats account for only approximately 0.3% of the current demand for transport fuels. Increasing biofuel production on arable land could have severe consequences for global food supply. In contrast, producing biodiesel from algae is widely regarded as one of the most efficient ways of generating biofuels and also appears to represent the only current renewable source of oil that could meet the global demand for transport fuels. The main advantages of second generation microalgal systems are that they: (1) Have a higher photon conversion efficiency (as evidenced by increased biomass yields per hectare): (2) Can be harvested batch-wise nearly all-year-round, providing a reliable and continuous supply of oil: (3) Can utilize salt and waste water streams, thereby greatly reducing freshwater use: (4) Can couple CO2-neutral fuel production with CO2 sequestration: (5) Produce non-toxic and highly biodegradable biofuels. Current limitations exist mainly in the harvesting process and in the supply of CO2 for high efficiency production. This review provides a brief overview of second generation biodiesel production systems using microalgae.

2,254 citations