scispace - formally typeset
Search or ask a question
Author

Arsenio Fernández-López

Bio: Arsenio Fernández-López is an academic researcher from University of León. The author has contributed to research in topics: Neuroprotection & Cerebral cortex. The author has an hindex of 17, co-authored 68 publications receiving 5669 citations.


Papers
More filters
Journal ArticleDOI
Daniel J. Klionsky1, Kotb Abdelmohsen2, Akihisa Abe3, Joynal Abedin4  +2519 moreInstitutions (695)
TL;DR: In this paper, the authors present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macro-autophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure flux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation, it is imperative to target by gene knockout or RNA interference more than one autophagy-related protein. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways implying that not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular assays, we hope to encourage technical innovation in the field.

5,187 citations

Journal ArticleDOI
TL;DR: The results highlight that cerebral ischemia activates transcriptional changes that lead to an increase in the endogenous RIP3 protein level which might contribute to the formation of the necrosome complex and to the subsequent component of necroptotic neuronal death that follows ischemic injury.

105 citations

Journal ArticleDOI
Daniel J. Klionsky1, Kotb Abdelmohsen2, Akihisa Abe3, Joynal Abedin4  +2519 moreInstitutions (697)
TL;DR: Author(s): Klionsky, DJ; Abdelmohsen, K; Abe, A; Abedin, MJ; Abeliovich, H; A Frozena, AA; Adachi, H, Adeli, K, Adhihetty, PJ; Adler, SG; Agam, G; Agarwal, R; Aghi, MK; Agnello, M; Agostinis, P; Aguilar, PV; Aguirre-Ghis
Abstract: Author(s): Klionsky, DJ; Abdelmohsen, K; Abe, A; Abedin, MJ; Abeliovich, H; Arozena, AA; Adachi, H; Adams, CM; Adams, PD; Adeli, K; Adhihetty, PJ; Adler, SG; Agam, G; Agarwal, R; Aghi, MK; Agnello, M; Agostinis, P; Aguilar, PV; Aguirre-Ghiso, J; Airoldi, EM; Ait-Si-Ali, S; Akematsu, T; Akporiaye, ET; Al-Rubeai, M; Albaiceta, GM; Albanese, C; Albani, D; Albert, ML; Aldudo, J; Algul, H; Alirezaei, M; Alloza, I; Almasan, A; Almonte-Beceril, M; Alnemri, ES; Alonso, C; Altan-Bonnet, N; Altieri, DC; Alvarez, S; Alvarez-Erviti, L; Alves, S; Amadoro, G; Amano, A; Amantini, C; Ambrosio, S; Amelio, I; Amer, AO; Amessou, M; Amon, A; An, Z; Anania, FA; Andersen, SU; Andley, UP; Andreadi, CK; Andrieu-Abadie, N; Anel, A; Ann, DK; Anoopkumar-Dukie, S; Antonioli, M; Aoki, H; Apostolova, N; Aquila, S; Aquilano, K; Araki, K; Arama, E; Aranda, A; Araya, J; Arcaro, A; Arias, E; Arimoto, H; Ariosa, AR; Armstrong, JL; Arnould, T; Arsov, I; Asanuma, K; Askanas, V; Asselin, E; Atarashi, R; Atherton, SS; Atkin, JD; Attardi, LD; Auberger, P; Auburger, G; Aurelian, L; Autelli, R

54 citations

Journal ArticleDOI
TL;DR: The pharmacological properties and anatomical distribution of α2, β1 and β2‐adrenoceptors in pigeon and chick brains were studied and proposed anatomical equivalences between a number of structures in the avian and mammalian encephalon are supported.
Abstract: The pharmacological properties and anatomical distribution of alpha2-, beta1- and beta2-adrenoceptors in pigeon and chick brains were studied by both homogenate binding and tissue section autoradiography. [3H]Bromoxidine (alpha2-adrenoceptor-), [3H]CGP 12177 (beta-adrenoceptor) and [125I]cyanopindolol (beta-adrenoceptor) were used as radioligands. In both species, [3H]bromoxidine binding to avian brain tissue showed a pharmacological profile similar to that previously reported for alpha2-adrenoceptors in mammals. Regarding the anatomical distribution, the areas with the highest densities of alpha2-adrenoceptors in the pigeon brain included the hyperstriatum, nuclei septalis, tectum opticum and some brainstem nuclei. Most beta-adrenoceptors found in tissue membranes and sections from chick and pigeon brain were of the beta2 subtype, in contrast to what has been reported in the mammalian brain, where the beta1 subtype is predominant. A striking difference was found between the two species regarding the densities of these receptors: while pigeon brain was extremely rich in [125I]cyanopindolol binding throughout the brain (mainly cerebellum) in the pigeon, the levels of labelling in the chick brain were much lower; the exception was the cerebellum, which displayed a higher density than other parts of the brain in both species. Overall, our results support the proposed anatomical equivalences between a number of structures in the avian and mammalian encephalon.

38 citations


Cited by
More filters
Journal ArticleDOI
Lorenzo Galluzzi1, Lorenzo Galluzzi2, Ilio Vitale3, Stuart A. Aaronson4  +183 moreInstitutions (111)
TL;DR: The Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives.
Abstract: Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field.

3,301 citations

Journal ArticleDOI
TL;DR: A functional classification of cell death subroutines is proposed that applies to both in vitro and in vivo settings and includes extrinsic apoptosis, caspase-dependent or -independent intrinsic programmed cell death, regulated necrosis, autophagic cell death and mitotic catastrophe.
Abstract: In 2009, the Nomenclature Committee on Cell Death (NCCD) proposed a set of recommendations for the definition of distinct cell death morphologies and for the appropriate use of cell death-related terminology, including 'apoptosis', 'necrosis' and 'mitotic catastrophe'. In view of the substantial progress in the biochemical and genetic exploration of cell death, time has come to switch from morphological to molecular definitions of cell death modalities. Here we propose a functional classification of cell death subroutines that applies to both in vitro and in vivo settings and includes extrinsic apoptosis, caspase-dependent or -independent intrinsic apoptosis, regulated necrosis, autophagic cell death and mitotic catastrophe. Moreover, we discuss the utility of expressions indicating additional cell death modalities. On the basis of the new, revised NCCD classification, cell death subroutines are defined by a series of precise, measurable biochemical features.

2,238 citations

Journal ArticleDOI
TL;DR: A way forward is suggested for the effective targeting of autophagy by understanding the context-dependent roles of autophile and by capitalizing on modern approaches to clinical trial design.
Abstract: Autophagy is a mechanism by which cellular material is delivered to lysosomes for degradation, leading to the basal turnover of cell components and providing energy and macromolecular precursors. Autophagy has opposing, context-dependent roles in cancer, and interventions to both stimulate and inhibit autophagy have been proposed as cancer therapies. This has led to the therapeutic targeting of autophagy in cancer to be sometimes viewed as controversial. In this Review, we suggest a way forwards for the effective targeting of autophagy by understanding the context-dependent roles of autophagy and by capitalizing on modern approaches to clinical trial design.

1,606 citations

Journal ArticleDOI
TL;DR: This study identifies immunohistochemically the main subunit combinations expressed in the adult rat brain and allocates them to identified neurons, providing the basis for a functional analysis of GABAA‐receptor subtypes of known subunit composition and may open the way for unproved therapeutic approaches based on the development of subtype‐selective drugs.
Abstract: GABAA-receptors display an extensive structural heterogeneity based on the differential assembly of a family of at least 15 subunits (alpha 1-6, beta 1-3, gamma 1-3, delta, rho 1-2) into distinct heteromeric receptor complexes. The subunit composition of receptor subtypes is expected to determine their physiological properties and pharmacological profiles, thereby contributing to flexibility in signal transduction and allosteric modulation. In heterologous expression systems, functional receptors require a combination of alpha-, beta-, and gamma-subunit variants, the gamma 2-subunit being essential to convey a classical benzodiazepine site to the receptor. The subunit composition and stoichiometry of native GABAA-receptor subtypes remain unknown. The aim of this study was to identify immunohistochemically the main subunit combinations expressed in the adult rat brain and to allocate them to identified neurons. The regional and cellular distribution of seven major subunits (alpha 1, alpha 2, alpha 3, alpha 5, beta 2,3, gamma 2, delta) was visualized by immunoperoxidase staining with subunit-specific antibodies (the beta 2- and beta 3-subunits were covisualized with the monoclonal antibody bd-17). Putative receptor subtypes were identified on the basis of colocalization of subunits within individual neurons, as analyzed by confocal laser microscopy in double- and triple-immunofluorescence staining experiments. The results reveal an extraordinary heterogeneity in the distribution of GABAA-receptor subunits, as evidenced by abrupt changes in immunoreactivity along well-defined cytoarchitectonic boundaries and by pronounced differences in the cellular distribution of subunits among various types of neurons. Thus, functionally and morphologically diverse neurons were characterized by a distinct GABAA-receptor subunit repertoire. The multiple staining experiments identified 12 subunit combinations in defined neurons. The most prevalent combination was the triplet alpha 1/beta 2,3/gamma 2, detected in numerous cell types throughout the brain. An additional subunit (alpha 2, alpha 3, or delta) sometimes was associated with this triplet, pointing to the existence of receptors containing four subunits. The triplets alpha 2/beta 2,3/gamma 2, alpha 3/beta 2,3/gamma 2, and alpha 5/beta 2,3/gamma 2 were also identified in discrete cell populations. The prevalence of these seven combinations suggest that they represent major GABAA-receptor subtypes. Five combinations also apparently lacked the beta 2,3-subunits, including one devoid of gamma 2-subunit (alpha 1/alpha 2/gamma 2, alpha 2/gamma 2, alpha 3/gamma 2, alpha 2/alpha 3/gamma 2, alpha 2/alpha 5/delta).(ABSTRACT TRUNCATED AT 400 WORDS)

1,221 citations

Journal ArticleDOI
TL;DR: It is shown that CQ mainly inhibits autophagy by impairing autophagosome fusion with lysosomes rather than by affecting the acidity and/or degradative activity of this organelle.
Abstract: Macroautophagy/autophagy is a conserved transport pathway where targeted structures are sequestered by phagophores, which mature into autophagosomes, and then delivered into lysosomes for degradati...

1,178 citations