scispace - formally typeset
Search or ask a question
Author

Arshad Desai

Bio: Arshad Desai is an academic researcher from University of California, San Diego. The author has contributed to research in topics: Kinetochore & Microtubule. The author has an hindex of 72, co-authored 173 publications receiving 20517 citations. Previous affiliations of Arshad Desai include University of California, San Francisco & Ludwig Institute for Cancer Research.


Papers
More filters
Journal ArticleDOI
TL;DR: This review describes progress toward understanding the mechanism of dynamic instability of pure tubulin and discusses the function and regulation of microtubule dynamic instability in living cells.
Abstract: The polymerization dynamics of microtubules are central to their biological functions. Polymerization dynamics allow microtubules to adopt spatial arrangements that can change rapidly in response to cellular needs and, in some cases, to perform mechanical work. Microtubules utilize the energy of GTP hydrolysis to fuel a unique polymerization mechanism termed dynamic instability. In this review, we first describe progress toward understanding the mechanism of dynamic instability of pure tubulin and then discuss the function and regulation of microtubule dynamic instability in living cells.

2,484 citations

Journal ArticleDOI
01 Dec 2006-Cell
TL;DR: It is proposed that the conserved KNL-1/Mis12 complex/Ndc80 complex (KMN) network constitutes the core microtubule-binding site of the kinetochore.

1,003 citations

Journal ArticleDOI
Mark Gerstein1, Zhi John Lu1, Eric L. Van Nostrand2, Chao Cheng1, Bradley I. Arshinoff3, Tao Liu4, Kevin Y. Yip1, R. Robilotto1, Andreas Rechtsteiner5, Kohta Ikegami6, P. Alves1, A. Chateigner, Marc D. Perry7, Mitzi Morris8, Raymond K. Auerbach1, X. Feng9, Jing Leng1, A. Vielle10, Wei Niu1, Kahn Rhrissorrakrai8, Ashish Agarwal1, Roger P. Alexander1, Galt P. Barber5, Cathleen M. Brdlik2, J. Brennan6, Jeremy Brouillet2, Adrian Carr, Ming Sin Cheung10, Hiram Clawson5, Sergio Contrino, Luke Dannenberg11, Abby F. Dernburg12, Arshad Desai13, L. Dick14, Andréa C. Dosé12, Jiang Du1, Thea A. Egelhofer5, Sevinc Ercan6, Ghia Euskirchen1, Brent Ewing15, Elise A. Feingold16, Reto Gassmann13, Peter J. Good16, Philip Green15, Francois Gullier, M. Gutwein8, Mark S. Guyer16, Lukas Habegger1, Ting Han17, Jorja G. Henikoff18, Stefan R. Henz19, Angie S. Hinrichs5, H. Holster11, Tony Hyman19, A. Leo Iniguez11, J. Janette1, M. Jensen6, Masaomi Kato1, W. James Kent5, E. Kephart7, Vishal Khivansara17, Ekta Khurana1, John Kim17, P. Kolasinska-Zwierz10, Eric C. Lai20, Isabel J. Latorre10, Amber Leahey15, Suzanna E. Lewis12, Paul Lloyd7, Lucas Lochovsky1, Rebecca F. Lowdon16, Yaniv Lubling21, Rachel Lyne, Michael J. MacCoss15, Sebastian D. Mackowiak22, Marco Mangone8, Sheldon J. McKay23, D. Mecenas8, Gennifer E. Merrihew15, David M. Miller24, A. Muroyama13, John I. Murray15, Siew Loon Ooi18, Hoang Pham12, T. Phippen5, Elicia Preston15, Nikolaus Rajewsky22, Gunnar Rätsch19, Heidi Rosenbaum11, Joel Rozowsky1, Kim Rutherford, P. Ruzanov7, Mihail Sarov19, Rajkumar Sasidharan1, Andrea Sboner1, P. Scheid8, Eran Segal21, Hyunjin Shin4, C. Shou1, Frank J. Slack1, C. Slightam2, Richard J.H. Smith, William C. Spencer24, Eo Stinson12, S. Taing4, Teruaki Takasaki5, D. Vafeados15, Ksenia Voronina13, Guilin Wang1, Nicole L. Washington12, Christina M. Whittle6, Beijing Wu2, Koon-Kiu Yan1, Georg Zeller, Z. Zha7, Mei Zhong1, Xingliang Zhou6, Julie Ahringer10, Susan Strome5, Kristin C. Gunsalus25, Gos Micklem, X. Shirley Liu4, Valerie Reinke1, Stuart K. Kim2, LaDeana W. Hillier15, Steven Henikoff18, Fabio Piano25, Michael Snyder1, Lincoln Stein23, Jason D. Lieb6, Robert H. Waterston15 
24 Dec 2010-Science
TL;DR: These studies identified regions of the nematode and fly genomes that show highly occupied targets (or HOT) regions where DNA was bound by more than 15 of the transcription factors analyzed and the expression of related genes were characterized, providing insights into the organization, structure, and function of the two genomes.
Abstract: We systematically generated large-scale data sets to improve genome annotation for the nematode Caenorhabditis elegans, a key model organism. These data sets include transcriptome profiling across a developmental time course, genome-wide identification of transcription factor-binding sites, and maps of chromatin organization. From this, we created more complete and accurate gene models, including alternative splice forms and candidate noncoding RNAs. We constructed hierarchical networks of transcription factor-binding and microRNA interactions and discovered chromosomal locations bound by an unusually large number of transcription factors. Different patterns of chromatin composition and histone modification were revealed between chromosome arms and centers, with similarly prominent differences between autosomes and the X chromosome. Integrating data types, we built statistical models relating chromatin, transcription factor binding, and gene expression. Overall, our analyses ascribed putative functions to most of the conserved genome.

978 citations

Journal ArticleDOI
TL;DR: The kinetochore is composed of a number of conserved protein complexes that direct its specification and assembly, bind to spindle microtubules and regulate chromosome segregation.
Abstract: Segregation of the replicated genome during cell division in eukaryotes requires the kinetochore to link centromeric DNA to spindle microtubules. The kinetochore is composed of a number of conserved protein complexes that direct its specification and assembly, bind to spindle microtubules and regulate chromosome segregation. Recent studies have identified more than 80 kinetochore components, and are revealing how these proteins are organized into the higher order kinetochore structure, as well as how they function to achieve proper chromosome segregation.

889 citations

Journal ArticleDOI
08 Jan 1999-Cell
TL;DR: In vitro assays with purified proteins show that XKCM1 and XKIF2, two distinct members of the internal catalytic domain (Kin I) kinesin subfamily, catalytically destabilize microtubules using a novel mechanism, establishing Kin I kinesins as microtubule-destabilizing enzymes.

712 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Seurat is a computational strategy to infer cellular localization by integrating single-cell RNA-seq data with in situ RNA patterns, and correctly localizes rare subpopulations, accurately mapping both spatially restricted and scattered groups.
Abstract: Spatial localization is a key determinant of cellular fate and behavior, but methods for spatially resolved, transcriptome-wide gene expression profiling across complex tissues are lacking. RNA staining methods assay only a small number of transcripts, whereas single-cell RNA-seq, which measures global gene expression, separates cells from their native spatial context. Here we present Seurat, a computational strategy to infer cellular localization by integrating single-cell RNA-seq data with in situ RNA patterns. We applied Seurat to spatially map 851 single cells from dissociated zebrafish (Danio rerio) embryos and generated a transcriptome-wide map of spatial patterning. We confirmed Seurat's accuracy using several experimental approaches, then used the strategy to identify a set of archetypal expression patterns and spatial markers. Seurat correctly localizes rare subpopulations, accurately mapping both spatially restricted and scattered groups. Seurat will be applicable to mapping cellular localization within complex patterned tissues in diverse systems.

3,465 citations

Journal ArticleDOI
TL;DR: A new method for fluorescence imaging has been developed that can obtain spatial distributions of large numbers of fluorescent molecules on length scales shorter than the classical diffraction limit, and suggests a means to address a significant number of biological questions that had previously been limited by microscope resolution.

3,437 citations

Journal ArticleDOI
Lorenzo Galluzzi1, Lorenzo Galluzzi2, Ilio Vitale3, Stuart A. Aaronson4  +183 moreInstitutions (111)
TL;DR: The Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives.
Abstract: Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field.

3,301 citations

Journal ArticleDOI
TL;DR: Genetic evidence suggests that tumour cells may also require specific interphase CDKs for proliferation, and selective CDK inhibition may provide therapeutic benefit against certain human neoplasias.
Abstract: Tumour-associated cell cycle defects are often mediated by alterations in cyclin-dependent kinase (CDK) activity. Misregulated CDKs induce unscheduled proliferation as well as genomic and chromosomal instability. According to current models, mammalian CDKs are essential for driving each cell cycle phase, so therapeutic strategies that block CDK activity are unlikely to selectively target tumour cells. However, recent genetic evidence has revealed that, whereas CDK1 is required for the cell cycle, interphase CDKs are only essential for proliferation of specialized cells. Emerging evidence suggests that tumour cells may also require specific interphase CDKs for proliferation. Thus, selective CDK inhibition may provide therapeutic benefit against certain human neoplasias.

3,146 citations