scispace - formally typeset
Search or ask a question
Author

Artem Chukanov

Bio: Artem Chukanov is an academic researcher from Joint Institute for Nuclear Research. The author has contributed to research in topics: Neutrino & Neutrino oscillation. The author has an hindex of 36, co-authored 116 publications receiving 4631 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The OPERA neutrino experiment is designed to perform the first observation of neutrinos oscillations in direct appearance mode in the $ u_\mu \to u_ \tau$ channel, via the detection of the leptons created in charged current interactions.
Abstract: The OPERA neutrino experiment is designed to perform the first observation of neutrino oscillations in direct appearance mode in the $ u_\mu \to u_\tau$ channel, via the detection of the $\tau$-leptons created in charged current $ u_\tau$ interactions. The detector, located in the underground Gran Sasso Laboratory, consists of an emulsion/lead target with an average mass of about 1.2 kt, complemented by electronic detectors. It is exposed to the CERN Neutrinos to Gran Sasso beam, with a baseline of 730 km and a mean energy of 17 GeV. The observation of the first $ u_\tau$ candidate event and the analysis of the 2008-2009 neutrino sample have been reported in previous publications. This work describes substantial improvements in the analysis and in the evaluation of the detection efficiencies and backgrounds using new simulation tools. The analysis is extended to a sub-sample of 2010 and 2011 data, resulting from an electronic detector-based pre-selection, in which an additional $ u_\tau$ candidate has been observed. The significance of the two events in terms of a $ u_\mu \to u_\tau$ oscillation signal is of 2.40 $\sigma$.

512 citations

Journal ArticleDOI
R. Acquafredda, T. Adam1, N. Agafonova2, P. Alvarez Sanchez3  +258 moreInstitutions (29)
TL;DR: The OPERA neutrino oscillation experiment has been designed to prove the appearance of ντ in a nearly pure νμ beam (CNGS) produced at CERN and detected in the underground Hall C of the Gran Sasso Laboratory, 730 km away from the source as discussed by the authors.
Abstract: The OPERA neutrino oscillation experiment has been designed to prove the appearance of ντ in a nearly pure νμ beam (CNGS) produced at CERN and detected in the underground Hall C of the Gran Sasso Laboratory, 730 km away from the source. In OPERA, τ leptons resulting from the interaction of ντ are produced in target units called bricks made of nuclear emulsion films interleaved with lead plates. The OPERA target contains 150000 of such bricks, for a total mass of 1.25 kton, arranged into walls interleaved with plastic scintillator strips. The detector is split into two identical supermodules, each supermodule containing a target section followed by a magnetic spectrometer for momentum and charge measurement of penetrating particles. Real time information from the scintillators and the spectrometers provide the identification of the bricks where the neutrino interactions occurred. The candidate bricks are extracted from the walls and, after X-ray marking and an exposure to cosmic rays for alignment, their emulsion films are developed and sent to the emulsion scanning laboratories to perform the accurate scan of the event. In this paper, we review the design and construction of the detector and of its related infrastructures, and report on some technical performances of the various components. The construction of the detector started in 2003 and it was completed in Summer 2008. The experiment is presently in the data taking phase. The whole sequence of operations has proven to be successful, from triggering to brick selection, development, scanning and event analysis.

240 citations

Journal ArticleDOI
D. Adey, F. P. An1, A. B. Balantekin2, H. R. Band3  +204 moreInstitutions (39)
TL;DR: A measurement of electron antineutrino oscillation from the Daya Bay Reactor Neutrinos Experiment with nearly 4 million reactor ν[over ¯]_{e} inverse β decay candidates observed over 1958 days of data collection is reported.
Abstract: We report a measurement of electron antineutrino oscillation from the Daya Bay Reactor Neutrino Experiment with nearly 4 million reactor ν[over ¯]_{e} inverse β decay candidates observed over 1958 days of data collection. The installation of a flash analog-to-digital converter readout system and a special calibration campaign using different source enclosures reduce uncertainties in the absolute energy calibration to less than 0.5% for visible energies larger than 2 MeV. The uncertainty in the cosmogenic ^{9}Li and ^{8}He background is reduced from 45% to 30% in the near detectors. A detailed investigation of the spent nuclear fuel history improves its uncertainty from 100% to 30%. Analysis of the relative ν[over ¯]_{e} rates and energy spectra among detectors yields sin^{2}2θ_{13}=0.0856±0.0029 and Δm_{32}^{2}=(2.471_{-0.070}^{+0.068})×10^{-3} eV^{2} assuming the normal hierarchy, and Δm_{32}^{2}=-(2.575_{-0.070}^{+0.068})×10^{-3} eV^{2} assuming the inverted hierarchy.

239 citations

Journal ArticleDOI
Abstract: A measurement of electron antineutrino oscillation by the Daya Bay Reactor Neutrino Experiment is described in detail. Six 2.9-GWth nuclear power reactors of the Daya Bay and Ling Ao nuclear power facilities served as intense sources of νe’s. Comparison of the νe rate and energy spectrum measured by antineutrino detectors far from the nuclear reactors (∼1500–1950 m ) relative to detectors near the reactors (∼350–600 m ) allowed a precise measurement of νe disappearance. More than 2.5 million νe inverse beta-decay interactions were observed, based on the combination of 217 days of operation of six antineutrino detectors (December, 2011–July, 2012) with a subsequent 1013 days using the complete configuration of eight detectors (October, 2012–July, 2015). The νe rate observed at the far detectors relative to the near detectors showed a significant deficit, R=0.949±0.002(stat)±0.002(syst). The energy dependence of νe disappearance showed the distinct variation predicted by neutrino oscillation. Analysis using an approximation for the three-flavor oscillation probability yielded the flavor-mixing angle sin^2 2θ_(13)=0.0841±0.0027(stat)±0.0019(syst) and the effective neutrino mass-squared difference of |Δm^2_(ee)|=(2.50±0.06(stat)±0.06(syst))×10^(−3) eV^2. Analysis using the exact three-flavor probability found Δm^2_(32)=(2.45±0.06(stat)±0.06(syst))×10^(−3) eV^2 assuming the normal neutrino mass hierarchy and Δm^2_(32)=(−2.56±0.06(stat)±0.06(syst))×10^(−3) eV^2 for the inverted hierarchy.

217 citations

Journal ArticleDOI
P. Astier1, D. Autiero2, A. Baldisseri, M. Baldo-Ceolin3  +169 moreInstitutions (23)
TL;DR: In this paper, the results of a search for vμ → v e oscillations in the NOMAD experiment at CERN were presented and the 90% confidence limits obtained are Δm2 < 0.4 eV 2 for maximal mixing and sin2(2θ) < 1.4 × 10-3 for large Δm 2.

184 citations


Cited by
More filters
Journal ArticleDOI
Nabila Aghanim1, Yashar Akrami2, Yashar Akrami3, Yashar Akrami4  +229 moreInstitutions (70)
TL;DR: In this article, the authors present cosmological parameter results from the full-mission Planck measurements of the cosmic microwave background (CMB) anisotropies, combining information from the temperature and polarization maps and the lensing reconstruction.
Abstract: We present cosmological parameter results from the final full-mission Planck measurements of the cosmic microwave background (CMB) anisotropies, combining information from the temperature and polarization maps and the lensing reconstruction Compared to the 2015 results, improved measurements of large-scale polarization allow the reionization optical depth to be measured with higher precision, leading to significant gains in the precision of other correlated parameters Improved modelling of the small-scale polarization leads to more robust constraints on manyparameters,withresidualmodellinguncertaintiesestimatedtoaffectthemonlyatthe05σlevelWefindgoodconsistencywiththestandard spatially-flat6-parameter ΛCDMcosmologyhavingapower-lawspectrumofadiabaticscalarperturbations(denoted“base ΛCDM”inthispaper), from polarization, temperature, and lensing, separately and in combination A combined analysis gives dark matter density Ωch2 = 0120±0001, baryon density Ωbh2 = 00224±00001, scalar spectral index ns = 0965±0004, and optical depth τ = 0054±0007 (in this abstract we quote 68% confidence regions on measured parameters and 95% on upper limits) The angular acoustic scale is measured to 003% precision, with 100θ∗ = 10411±00003Theseresultsareonlyweaklydependentonthecosmologicalmodelandremainstable,withsomewhatincreasederrors, in many commonly considered extensions Assuming the base-ΛCDM cosmology, the inferred (model-dependent) late-Universe parameters are: HubbleconstantH0 = (674±05)kms−1Mpc−1;matterdensityparameterΩm = 0315±0007;andmatterfluctuationamplitudeσ8 = 0811±0006 We find no compelling evidence for extensions to the base-ΛCDM model Combining with baryon acoustic oscillation (BAO) measurements (and consideringsingle-parameterextensions)weconstraintheeffectiveextrarelativisticdegreesoffreedomtobe Neff = 299±017,inagreementwith the Standard Model prediction Neff = 3046, and find that the neutrino mass is tightly constrained toPmν < 012 eV The CMB spectra continue to prefer higher lensing amplitudesthan predicted in base ΛCDM at over 2σ, which pulls some parameters that affect thelensing amplitude away from the ΛCDM model; however, this is not supported by the lensing reconstruction or (in models that also change the background geometry) BAOdataThejointconstraintwithBAOmeasurementsonspatialcurvatureisconsistentwithaflatuniverse, ΩK = 0001±0002Alsocombining with Type Ia supernovae (SNe), the dark-energy equation of state parameter is measured to be w0 = −103±003, consistent with a cosmological constant We find no evidence for deviations from a purely power-law primordial spectrum, and combining with data from BAO, BICEP2, and Keck Array data, we place a limit on the tensor-to-scalar ratio r0002 < 006 Standard big-bang nucleosynthesis predictions for the helium and deuterium abundances for the base-ΛCDM cosmology are in excellent agreement with observations The Planck base-ΛCDM results are in good agreement with BAO, SNe, and some galaxy lensing observations, but in slight tension with the Dark Energy Survey’s combined-probe results including galaxy clustering (which prefers lower fluctuation amplitudes or matter density parameters), and in significant, 36σ, tension with local measurements of the Hubble constant (which prefer a higher value) Simple model extensions that can partially resolve these tensions are not favoured by the Planck data

4,688 citations

Journal ArticleDOI
Nabila Aghanim1, Yashar Akrami2, Yashar Akrami3, Yashar Akrami4  +229 moreInstitutions (70)
TL;DR: In this paper, the cosmological parameter results from the final full-mission Planck measurements of the CMB anisotropies were presented, with good consistency with the standard spatially-flat 6-parameter CDM cosmology having a power-law spectrum of adiabatic scalar perturbations from polarization, temperature, and lensing separately and in combination.
Abstract: We present cosmological parameter results from the final full-mission Planck measurements of the CMB anisotropies. We find good consistency with the standard spatially-flat 6-parameter $\Lambda$CDM cosmology having a power-law spectrum of adiabatic scalar perturbations (denoted "base $\Lambda$CDM" in this paper), from polarization, temperature, and lensing, separately and in combination. A combined analysis gives dark matter density $\Omega_c h^2 = 0.120\pm 0.001$, baryon density $\Omega_b h^2 = 0.0224\pm 0.0001$, scalar spectral index $n_s = 0.965\pm 0.004$, and optical depth $\tau = 0.054\pm 0.007$ (in this abstract we quote $68\,\%$ confidence regions on measured parameters and $95\,\%$ on upper limits). The angular acoustic scale is measured to $0.03\,\%$ precision, with $100\theta_*=1.0411\pm 0.0003$. These results are only weakly dependent on the cosmological model and remain stable, with somewhat increased errors, in many commonly considered extensions. Assuming the base-$\Lambda$CDM cosmology, the inferred late-Universe parameters are: Hubble constant $H_0 = (67.4\pm 0.5)$km/s/Mpc; matter density parameter $\Omega_m = 0.315\pm 0.007$; and matter fluctuation amplitude $\sigma_8 = 0.811\pm 0.006$. We find no compelling evidence for extensions to the base-$\Lambda$CDM model. Combining with BAO we constrain the effective extra relativistic degrees of freedom to be $N_{\rm eff} = 2.99\pm 0.17$, and the neutrino mass is tightly constrained to $\sum m_ u< 0.12$eV. The CMB spectra continue to prefer higher lensing amplitudes than predicted in base -$\Lambda$CDM at over $2\,\sigma$, which pulls some parameters that affect the lensing amplitude away from the base-$\Lambda$CDM model; however, this is not supported by the lensing reconstruction or (in models that also change the background geometry) BAO data. (Abridged)

3,077 citations

Journal ArticleDOI
TL;DR: In this article, the first set of parton distribution functions (PDFs) determined with a methodology validated by a closure test is presented, which is based on LO, NLO and NNLO QCD theory and also includes electroweak corrections.
Abstract: We present NNPDF3.0, the first set of parton distribution functions (PDFs) determined with a methodology validated by a closure test. NNPDF3.0 uses a global dataset including HERA-II deep-inelastic inclusive cross-sections, the combined HERA charm data, jet production from ATLAS and CMS, vector boson rapidity and transverse momentum distributions from ATLAS, CMS and LHCb, W+c data from CMS and top quark pair production total cross sections from ATLAS and CMS. Results are based on LO, NLO and NNLO QCD theory and also include electroweak corrections. To validate our methodology, we show that PDFs determined from pseudo-data generated from a known underlying law correctly reproduce the statistical distributions expected on the basis of the assumed experimental uncertainties. This closure test ensures that our methodological uncertainties are negligible in comparison to the generic theoretical and experimental uncertainties of PDF determination. This enables us to determine with confidence PDFs at different perturbative orders and using a variety of experimental datasets ranging from HERA-only up to a global set including the latest LHC results, all using precisely the same validated methodology. We explore some of the phenomenological implications of our results for the upcoming 13 TeV Run of the LHC, in particular for Higgs production cross-sections.

2,028 citations

01 Apr 2003
TL;DR: In this paper, the authors measured the flux of neutrino from distant nuclear reactors and found fewer nu;(e) events than expected from standard assumptions about nu; (e) propagation at the 99.95% C.L.yr exposure.
Abstract: KamLAND has measured the flux of nu;(e)'s from distant nuclear reactors. We find fewer nu;(e) events than expected from standard assumptions about nu;(e) propagation at the 99.95% C.L. In a 162 ton.yr exposure the ratio of the observed inverse beta-decay events to the expected number without nu;(e) disappearance is 0.611+/-0.085(stat)+/-0.041(syst) for nu;(e) energies >3.4 MeV. In the context of two-flavor neutrino oscillations with CPT invariance, all solutions to the solar neutrino problem except for the "large mixing angle" region are excluded.

1,659 citations