scispace - formally typeset
Search or ask a question
Author

Arthur D. Pelton

Bio: Arthur D. Pelton is an academic researcher from École Polytechnique de Montréal. The author has contributed to research in topics: Phase diagram & Liquidus. The author has an hindex of 54, co-authored 368 publications receiving 13502 citations. Previous affiliations of Arthur D. Pelton include École Polytechnique & Université de Montréal.


Papers
More filters
Journal ArticleDOI
TL;DR: The reputation of FactSage has been established mainly in the field of complex chemical equilibria and process simulation where the software has unique capabilities.
Abstract: This paper presents a summary of the FactSage thermochemical software and databases. FactSage was introduced in 2001 and is the fusion of the FACT-Win/F∗A∗C∗T and ChemSage/SOLGASMIX thermochemical packages that were founded over 25 years ago. The FactSage package runs on a PC operating under Microsoft Windows® and consists of a series of information, database, calculation and manipulation modules that enable one to access and manipulate pure substances and solution databases. With the various modules one can perform a wide variety of thermochemical calculations and generate tables, graphs and figures of interest to chemical and physical metallurgists, chemical engineers, corrosion engineers, inorganic chemists, geochemists, ceramists, electrochemists, environmentalists, etc. In this article emphasis is placed on the calculation and manipulation of phase diagrams. However the reputation of FactSage has been established mainly in the field of complex chemical equilibria and process simulation where the software has unique capabilities. Some of these capabilities are also shown in this paper.

2,014 citations

Journal ArticleDOI
TL;DR: Emphasis is placed on the new databases and the calculation and manipulation of phase diagrams and complex phase equilibria in the FactSage thermochemical software and databases.
Abstract: FactSage® was introduced in 2001 as the fusion of the F*A*C*T/FACT-Win and ChemSage thermochemical packages. The FactSage package runs on a PC operating under Microsoft Windows® and consists of a series of information, database, calculation and manipulation modules that enable one to access and manipulate pure substances and solution databases. With the various modules one can perform a wide variety of thermochemical calculations and generate tables, graphs and figures of interest to chemical and physical metallurgists, chemical engineers, corrosion engineers, inorganic chemists, geochemists, ceramists, electrochemists, environmentalists, etc. This paper presents a summary of the recent developments in the FactSage thermochemical software and databases. In the article, emphasis is placed on the new databases and the calculation and manipulation of phase diagrams and complex phase equilibria.

1,363 citations

Journal ArticleDOI
TL;DR: The FactSage computer package as discussed by the authors consists of a series of information, calculation and manipulation modules that enable one to access and manipulate compound and solution databases and perform a wide variety of thermochemical calculations and generate tables, graphs and figures of interest.
Abstract: The FactSage computer package consists of a series of information, calculation and manipulation modules that enable one to access and manipulate compound and solution databases. With the various modules running under Microsoft Windows® one can perform a wide variety of thermochemical calculations and generate tables, graphs and figures of interest to chemical and physical metallurgists, chemical engineers, corrosion engineers, inorganic chemists, geochemists, ceramists, electrochemists, environmentalists, etc. This paper presents a summary of the developments in the FactSage thermochemical software and databases during the last six years. Particular emphasis is placed on the new databases and developments in calculating and manipulating phase diagrams.

1,175 citations

Journal ArticleDOI
TL;DR: In this article, a modified quasichemical model for short-range ordering in liquid and solid solutions is presented, where the energy of pair formation is expanded in terms of the pair fractions rather than the component fractions, and coordination numbers are permitted to vary with composition.
Abstract: Further improvements to the modified quasichemical model in the pair approximation for short-range ordering in liquid and solid solutions are presented. The energy of pair formation is expanded in terms of the pair fractions rather than the component fractions, and coordination numbers are permitted to vary with composition. A formalism is introduced whereby the quasichemical equations are shown to be equivalent to the equations of an associate model if the pairs are formally treated as fractional associates. The model is applied to the liquid phase in a new optimization of the KCl-MgCl2 system.

557 citations

Journal ArticleDOI
TL;DR: In this article, the modified quasi-chemical model in the pair approximation for short-range ordering (SRO) in liquids is extended to multicomponent solutions and an improved general functional form for "ternary terms" in the excess Gibbs energy expression is proposed, related to the effect of a third component upon the binary pair interaction energies.
Abstract: Further improvements to the modified quasi-chemical model in the pair approximation for shortrange ordering (SRO) in liquids are extended to multicomponent solutions. The energy of pair formation may be expanded in terms of the pair fractions or in terms of the component fractions, and coordination numbers are permitted to vary with composition. The model permits complete freedom of choice to treat any ternary subsystem with a symmetric or an asymmetric model. An improved general functional form for “ternary terms” in the excess Gibbs energy expression is proposed. These terms are related to the effect of a third component upon the binary pair interaction energies. It is shown how binary subsystems that have been optimized with the quasi-chemical model can be combined in the same multicomponent Gibbs energy equation with binary subsystems that have been optimized with a random-mixing Bragg-Williams model and a polynomial expression for the excess Gibbs energy. This is of much practical importance in the development of large databases for multicomponent solutions. The model also applies to SRO in solid solutions as a special case, when the number of lattice sites and coordination numbers are constant.

415 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: Current research on materials is summarized and discussed and future directions for SIBs are proposed to provide important insights into scientific and practical issues in the development of S IBs.
Abstract: Energy production and storage technologies have attracted a great deal of attention for day-to-day applications. In recent decades, advances in lithium-ion battery (LIB) technology have improved living conditions around the globe. LIBs are used in most mobile electronic devices as well as in zero-emission electronic vehicles. However, there are increasing concerns regarding load leveling of renewable energy sources and the smart grid as well as the sustainability of lithium sources due to their limited availability and consequent expected price increase. Therefore, whether LIBs alone can satisfy the rising demand for small- and/or mid-to-large-format energy storage applications remains unclear. To mitigate these issues, recent research has focused on alternative energy storage systems. Sodium-ion batteries (SIBs) are considered as the best candidate power sources because sodium is widely available and exhibits similar chemistry to that of LIBs; therefore, SIBs are promising next-generation alternatives. Recently, sodiated layer transition metal oxides, phosphates and organic compounds have been introduced as cathode materials for SIBs. Simultaneously, recent developments have been facilitated by the use of select carbonaceous materials, transition metal oxides (or sulfides), and intermetallic and organic compounds as anodes for SIBs. Apart from electrode materials, suitable electrolytes, additives, and binders are equally important for the development of practical SIBs. Despite developments in electrode materials and other components, there remain several challenges, including cell design and electrode balancing, in the application of sodium ion cells. In this article, we summarize and discuss current research on materials and propose future directions for SIBs. This will provide important insights into scientific and practical issues in the development of SIBs.

3,009 citations

Journal ArticleDOI
TL;DR: The reputation of FactSage has been established mainly in the field of complex chemical equilibria and process simulation where the software has unique capabilities.
Abstract: This paper presents a summary of the FactSage thermochemical software and databases. FactSage was introduced in 2001 and is the fusion of the FACT-Win/F∗A∗C∗T and ChemSage/SOLGASMIX thermochemical packages that were founded over 25 years ago. The FactSage package runs on a PC operating under Microsoft Windows® and consists of a series of information, database, calculation and manipulation modules that enable one to access and manipulate pure substances and solution databases. With the various modules one can perform a wide variety of thermochemical calculations and generate tables, graphs and figures of interest to chemical and physical metallurgists, chemical engineers, corrosion engineers, inorganic chemists, geochemists, ceramists, electrochemists, environmentalists, etc. In this article emphasis is placed on the calculation and manipulation of phase diagrams. However the reputation of FactSage has been established mainly in the field of complex chemical equilibria and process simulation where the software has unique capabilities. Some of these capabilities are also shown in this paper.

2,014 citations

Journal ArticleDOI
TL;DR: Emphasis is placed on the new databases and the calculation and manipulation of phase diagrams and complex phase equilibria in the FactSage thermochemical software and databases.
Abstract: FactSage® was introduced in 2001 as the fusion of the F*A*C*T/FACT-Win and ChemSage thermochemical packages. The FactSage package runs on a PC operating under Microsoft Windows® and consists of a series of information, database, calculation and manipulation modules that enable one to access and manipulate pure substances and solution databases. With the various modules one can perform a wide variety of thermochemical calculations and generate tables, graphs and figures of interest to chemical and physical metallurgists, chemical engineers, corrosion engineers, inorganic chemists, geochemists, ceramists, electrochemists, environmentalists, etc. This paper presents a summary of the recent developments in the FactSage thermochemical software and databases. In the article, emphasis is placed on the new databases and the calculation and manipulation of phase diagrams and complex phase equilibria.

1,363 citations

Journal ArticleDOI
TL;DR: The FactSage computer package as discussed by the authors consists of a series of information, calculation and manipulation modules that enable one to access and manipulate compound and solution databases and perform a wide variety of thermochemical calculations and generate tables, graphs and figures of interest.
Abstract: The FactSage computer package consists of a series of information, calculation and manipulation modules that enable one to access and manipulate compound and solution databases. With the various modules running under Microsoft Windows® one can perform a wide variety of thermochemical calculations and generate tables, graphs and figures of interest to chemical and physical metallurgists, chemical engineers, corrosion engineers, inorganic chemists, geochemists, ceramists, electrochemists, environmentalists, etc. This paper presents a summary of the developments in the FactSage thermochemical software and databases during the last six years. Particular emphasis is placed on the new databases and developments in calculating and manipulating phase diagrams.

1,175 citations