scispace - formally typeset
Search or ask a question

Showing papers by "Arthur D. Richmond published in 1992"


Journal ArticleDOI
TL;DR: In this paper, a new simulation model of upper atmospheric dynamics is presented that includes self-consistent electrodynamic interactions between the thermosphere and ionosphere and uses the resultant electric fields and currents in calculating the neutral and plasma dynamics.
Abstract: A new simulation model of upper atmospheric dynamics is presented that includes self-consistent electrodynamic interactions between the thermosphere and ionosphere. This model calculates the dynamo effects of thermospheric winds, and uses the resultant electric fields and currents in calculating the neutral and plasma dynamics. A realistic geomagnetic field geometry is used. Sample simulations for solar maximum equinox conditions illustrate two previously predicted effects of the feedback. Near the magnetic equator, the afternoon uplift of the ionosphere by an eastward electric field reduces ion drag on the neutral wind, so that relatively strong eastward winds can occur in the evening. In addition, a vertical electric field is generated by the low-latitude wind, which produces east-west plasma drifts in the same direction as the wind, further reducing the ion drag and resulting in stronger zonal winds.

949 citations


Journal ArticleDOI
TL;DR: The AMIE procedure as discussed by the authors is a form of optimally constrained, weighted least-squares fit of the electric potential distribution to all relevant data, and has been applied in many areas of magnetospheric, ionospheric and thermospheric physics.

228 citations


Journal ArticleDOI
TL;DR: In this paper, a two-dimensional pole-to-pole numerical model with background solstitial winds has been used to study the global dynamical response of the thermosphere to high-latitude energy inputs associated with a model geomagnetic storm.
Abstract: A two-dimensional pole-to-pole numerical model with background solstitial winds has been used to study the global dynamical response of the thermosphere to high-latitude energy inputs associated with a model geomagnetic storm. This model storm has four distinct pulses of heat input over a 12-h period. The thermospheric wave response to the sustained part of the storm heat input consists in the establishment of a global meridional circulation that is initiated in about 3 to 4 hours after storm commencement and never quite reaches steady state in the simulation. The main purpose of this study is to investigate the interaction between the disturbances and the mean meridional flow associated with the storm. It is shown that this interaction can be represented in terms of an induced circulation. This induced circulation is forced by the transient nature of the eddy flux convergences (divergences) of heat and momentum. The equivalent temperature changes due to the induced circulation are one-third to o...

11 citations