scispace - formally typeset
Search or ask a question

Showing papers by "Arthur D. Richmond published in 2016"


Journal ArticleDOI
TL;DR: A review of the most common magnetic coordinate systems and how they are defined, where they are used, and how to convert between them can be found in this paper, where the definitions are presented based on the spherical harmonic expansion coefficients of the International Geomagnetic Reference Field (IGRF) and, in some of the coordinate systems, the position of the Sun which we show how to calculate from the time and date.
Abstract: Geospace phenomena such as the aurora, plasma motion, ionospheric currents and associated magnetic field disturbances are highly organized by Earth's main magnetic field. This is due to the fact that the charged particles that comprise space plasma can move almost freely along magnetic field lines, but not across them. For this reason it is sensible to present such phenomena relative to Earth's magnetic field. A large variety of magnetic coordinate systems exist, designed for different purposes and regions, ranging from the magnetopause to the ionosphere. In this paper we review the most common magnetic coordinate systems and describe how they are defined, where they are used, and how to convert between them. The definitions are presented based on the spherical harmonic expansion coefficients of the International Geomagnetic Reference Field (IGRF) and, in some of the coordinate systems, the position of the Sun which we show how to calculate from the time and date. The most detailed coordinate systems take the full IGRF into account and define magnetic latitude and longitude such that they are constant along field lines. These coordinate systems, which are useful at ionospheric altitudes, are non-orthogonal. We show how to handle vectors and vector calculus in such coordinates, and discuss how systematic errors may appear if this is not done correctly.

180 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present a quantitative assessment of high-latitude energy input and its partitioning in the polar cap by synthesizing various space and ground-based observations during the 17 January 2005 geomagnetic storm.
Abstract: This paper presents a quantitative assessment of high-latitude energy input and its partitioning in the polar cap by synthesizing various space and ground-based observations during the 17 January 2005 geomagnetic storm. It was found that Joule heating is the primary form of magnetospheric energy input, especially during active times when the hemispheric-integrated Joule heating can be an order of magnitude larger than the hemispheric-integrated auroral power. Most of magnetospheric energy is dissipated in the auroral zone rather than in the polar cap. On average, only about 22–25% of the total hemispheric energy input is dissipated into the polar cap region bordered by the convection reversal boundary (CRB) and the poleward auroral flux boundary (FXB). The impact of high-latitude energy input was also investigated to unveil the causal relationship between Joule heating and the formation of polar cap mass density anomalies. Our numerical simulation demonstrated that thermosphere dynamics readily redistributes composition, temperature, and mass through upwelling and atmospheric gravity waves. The polar cap mass density anomalies observed by the CHAMP satellite during the storm were largely a result of large-scale atmospheric gravity waves. Therefore, an increase in local thermospheric mass density does not necessarily mean there is direct energy input.

58 citations


01 Dec 2016
TL;DR: In this article, the authors present a quantitative assessment of high-latitude energy input and its partitioning in the polar cap by synthesizing various space and ground-based observations during the 17 January 2005 geomagnetic storm.
Abstract: This paper presents a quantitative assessment of high-latitude energy input and its partitioning in the polar cap by synthesizing various space and ground-based observations during the 17 January 2005 geomagnetic storm. It was found that Joule heating is the primary form of magnetospheric energy input, especially during active times when the hemispheric-integrated Joule heating can be an order of magnitude larger than the hemispheric-integrated auroral power. Most of magnetospheric energy is dissipated in the auroral zone rather than in the polar cap. On average, only about 22–25% of the total hemispheric energy input is dissipated into the polar cap region bordered by the convection reversal boundary (CRB) and the poleward auroral flux boundary (FXB). The impact of high-latitude energy input was also investigated to unveil the causal relationship between Joule heating and the formation of polar cap mass density anomalies. Our numerical simulation demonstrated that thermosphere dynamics readily redistributes composition, temperature, and mass through upwelling and atmospheric gravity waves. The polar cap mass density anomalies observed by the CHAMP satellite during the storm were largely a result of large-scale atmospheric gravity waves. Therefore, an increase in local thermospheric mass density does not necessarily mean there is direct energy input.

51 citations




01 Jan 2016
TL;DR: In this article, the winter temperature tides and their responses to the magnetospheric sources are presented for the high southern latitude of the McMurdo LIDAR station, which is located at the poleward edge of the auroral oval, providing great opportunities for researchers to study the interactions among neutral atmosphere, ionosphere and magnetosphere.
Abstract: McMurdo station (77.8°S, 166.7°E), locating at the poleward edge of the auroral oval, provides great opportunities for researchers to study the interactions among neutral atmosphere, ionosphere and magnetosphere. More than four years of valuable data have been collected, leading to several new discoveries from the McMurdo lidar campaign. Presented here are the winter temperature tides and their responses to the magnetospheric sources. Winter temperature structures from the lidar observations are also presented for this high southern latitude.

2 citations


Journal ArticleDOI
01 Jun 2016
TL;DR: In this article, the winter temperature tides and their responses to the magnetospheric sources are presented for the high southern latitude of the McMurdo LIDAR station, which is located at the poleward edge of the auroral oval, providing great opportunities for researchers to study the interactions among neutral atmosphere, ionosphere and magnetosphere.
Abstract: McMurdo station (77.8°S, 166.7°E), locating at the poleward edge of the auroral oval, provides great opportunities for researchers to study the interactions among neutral atmosphere, ionosphere and magnetosphere. More than four years of valuable data have been collected, leading to several new discoveries from the McMurdo lidar campaign. Presented here are the winter temperature tides and their responses to the magnetospheric sources. Winter temperature structures from the lidar observations are also presented for this high southern latitude.

2 citations