scispace - formally typeset
Search or ask a question
Author

Arthur Dogariu

Bio: Arthur Dogariu is an academic researcher from Princeton University. The author has contributed to research in topics: Laser & Femtosecond. The author has an hindex of 35, co-authored 212 publications receiving 5243 citations. Previous affiliations of Arthur Dogariu include NEC & University of California, Santa Barbara.


Papers
More filters
Journal ArticleDOI
20 Jul 2000-Nature
TL;DR: Gain-assisted linear anomalous dispersion is used to demonstrate superluminal light propagation in atomic caesium gas and is observed to be a direct consequence of classical interference between its different frequency components in an anomalously dispersion region.
Abstract: Einstein's theory of special relativity and the principle of causality imply that the speed of any moving object cannot exceed that of light in a vacuum (c) Nevertheless, there exist various proposals for observing faster-than-c propagation of light pulses, using anomalous dispersion near an absorption line, nonlinear and linear gain lines, or tunnelling barriers However, in all previous experimental demonstrations, the light pulses experienced either very large absorption or severe reshaping, resulting in controversies over the interpretation Here we use gain-assisted linear anomalous dispersion to demonstrate superluminal light propagation in atomic caesium gas The group velocity of a laser pulse in this region exceeds c and can even become negative, while the shape of the pulse is preserved We measure a group-velocity index of n(g) = -310(+/- 5); in practice, this means that a light pulse propagating through the atomic vapour cell appears at the exit side so much earlier than if it had propagated the same distance in a vacuum that the peak of the pulse appears to leave the cell before entering it The observed superluminal light pulse propagation is not at odds with causality, being a direct consequence of classical interference between its different frequency components in an anomalous dispersion region

1,211 citations

Journal ArticleDOI
13 Apr 2007-Science
TL;DR: A hybrid technique that combines the robustness of frequency-resolved coherent anti-Stokes Raman scattering (CARS) with the advantages of time-resolving CARS spectroscopy is introduced and a rapid and highly specific detection scheme that works even in the presence of multiple scattering is demonstrated.
Abstract: We introduce a hybrid technique that combines the robustness of frequency-resolved coherent anti-Stokes Raman scattering (CARS) with the advantages of time-resolved CARS spectroscopy. Instantaneous coherent broadband excitation of several characteristic molecular vibrations and the subsequent probing of these vibrations by an optimally shaped time-delayed narrowband laser pulse help to suppress the nonresonant background and to retrieve the species-specific signal. We used this technique for coherent Raman spectroscopy of sodium dipicolinate powder, which is similar to calcium dipicolinate (a marker molecule for bacterial endospores, such as Bacillus subtilis and Bacillus anthracis), and we demonstrated a rapid and highly specific detection scheme that works even in the presence of multiple scattering.

324 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that a superluminal light-pulse propagation can be observed even at a negative 7group velocity through a transparent medium with almost no pulse distortion.
Abstract: Anomalous dispersion cannot occur in a transparent passive medium where electromagnetic radiation is being absorbed at all frequencies, as pointed out by Landau and Lifshitz. Here we show, both theoretically and experimentally, that transparent linear anomalous dispersion can occur when a gain doublet is present. Therefore, a superluminal light-pulse propagation can be observed even at a negative 7group velocity through a transparent medium with almost no pulse distortion. Consequently, a negative transit time is experimentally observed resulting in the peak of the incident light pulse to exit the medium even before entering it. This counterintuitive effect is a direct result of the rephasing process owing to the wave nature of light and is not at odds with either causality or Einstein's theory of special relativity.

276 citations

Journal ArticleDOI
28 Jan 2011-Science
TL;DR: It is demonstrated that high gain can be achieved in the near-infrared region by pumping with a focused ultraviolet laser and low-divergence backward air lasing provides possibilities for remote detection.
Abstract: The compelling need for standoff detection of hazardous gases and vapor indicators of explosives has motivated the development of a remotely pumped, high-gain air laser that produces lasing in the backward direction and can sample the air as the beam returns. We demonstrate that high gain can be achieved in the near-infrared region by pumping with a focused ultraviolet laser. The pumping mechanism is simultaneous resonant two-photon dissociation of molecular oxygen and resonant two-photon pumping of the atomic oxygen fragments. The high gain from the millimeter-length focal zone leads to equally strong lasing in the forward and backward directions. Further backward amplification is achieved with the use of earlier laser spark dissociation. Low-divergence backward air lasing provides possibilities for remote detection.

263 citations

Journal ArticleDOI
TL;DR: The use of high-intensity femtosecond pulses for flow tagging allows the accurate determination of velocity profiles with a single laser system and camera.
Abstract: Time-accurate velocity measurements in unseeded air are made by tagging nitrogen with a femtosecond-duration laser pulse and monitoring the displacement of the molecules with a time-delayed, fast-gated camera. Centimeter-long lines are written through the focal region of a ∼1 mJ, 810 nm laser and are produced by nonlinear excitation and dissociation of nitrogen. Negligible heating is associated with this interaction. The emission arises from recombining nitrogen atoms and lasts for tens of microseconds in natural air. It falls into the 560 to 660 nm spectral region and consists of multiple spectral lines associated with first positive nitrogen transitions. The feasibility of this concept is demonstrated with lines written across a free jet, yielding instantaneous and averaged velocity profiles. The use of high-intensity femtosecond pulses for flow tagging allows the accurate determination of velocity profiles with a single laser system and camera.

176 citations


Cited by
More filters
Journal Article
TL;DR: In this article, a fast Fourier transform method of topography and interferometry is proposed to discriminate between elevation and depression of the object or wave-front form, which has not been possible by the fringe-contour generation techniques.
Abstract: A fast-Fourier-transform method of topography and interferometry is proposed. By computer processing of a noncontour type of fringe pattern, automatic discrimination is achieved between elevation and depression of the object or wave-front form, which has not been possible by the fringe-contour-generation techniques. The method has advantages over moire topography and conventional fringe-contour interferometry in both accuracy and sensitivity. Unlike fringe-scanning techniques, the method is easy to apply because it uses no moving components.

3,742 citations

Journal ArticleDOI
TL;DR: In this paper, the authors summarized the simultaneous transmission of several independent spatial channels of light along optical fibres to expand the data-carrying capacity of optical communications, and showed that the results achieved in both multicore and multimode optical fibers are documented.
Abstract: This Review summarizes the simultaneous transmission of several independent spatial channels of light along optical fibres to expand the data-carrying capacity of optical communications. Recent results achieved in both multicore and multimode optical fibres are documented.

2,629 citations

Journal ArticleDOI
TL;DR: A surface plasmon polariton (SPP) is an electromagnetic excitation existing on the surface of a good metal, whose electromagnetic field decays exponentially with distance from the surface.

2,211 citations

Journal ArticleDOI
04 Jan 2007-Nature
TL;DR: The presence of tiny holes in an opaque metal film leads to a wide variety of unexpected optical properties such as strongly enhanced transmission of light through the holes and wavelength filtering, which are now known to be due to the interaction of the light with electronic resonances in the surface of the metal film.
Abstract: The presence of tiny holes in an opaque metal film, with sizes smaller than the wavelength of incident light, leads to a wide variety of unexpected optical properties such as strongly enhanced transmission of light through the holes and wavelength filtering. These intriguing effects are now known to be due to the interaction of the light with electronic resonances in the surface of the metal film, and they can be controlled by adjusting the size and geometry of the holes. This knowledge is opening up exciting new opportunities in applications ranging from subwavelength optics and optoelectronics to chemical sensing and biophysics.

2,009 citations

Journal ArticleDOI
09 Aug 2012-Nature
TL;DR: The experimental observation of light transport in large-scale temporal lattices that are parity–time symmetric is reported and it is demonstrated that periodic structures respecting this symmetry can act as unidirectional invisible media when operated near their exceptional points.
Abstract: The development of new artificial structures and materials is today one of the major research challenges in optics. In most studies so far, the design of such structures has been based on the judicious manipulation of their refractive index properties. Recently, the prospect of simultaneously using gain and loss was suggested as a new way of achieving optical behaviour that is at present unattainable with standard arrangements. What facilitated these quests is the recently developed notion of 'parity-time symmetry' in optical systems, which allows a controlled interplay between gain and loss. Here we report the experimental observation of light transport in large-scale temporal lattices that are parity-time symmetric. In addition, we demonstrate that periodic structures respecting this symmetry can act as unidirectional invisible media when operated near their exceptional points. Our experimental results represent a step in the application of concepts from parity-time symmetry to a new generation of multifunctional optical devices and networks.

1,712 citations