scispace - formally typeset
Search or ask a question
Author

Arthur Liberzon

Bio: Arthur Liberzon is an academic researcher from Broad Institute. The author has contributed to research in topics: GATAD2B & KEGG. The author has an hindex of 17, co-authored 27 publications receiving 8447 citations. Previous affiliations of Arthur Liberzon include Massachusetts Institute of Technology & Bar-Ilan University.
Topics: GATAD2B, KEGG, Plasma protein binding, YY1, Phagemid

Papers
More filters
Journal ArticleDOI
TL;DR: A combination of automated approaches and expert curation is used to develop a collection of "hallmark" gene sets, derived from multiple "founder" sets, that conveys a specific biological state or process and displays coherent expression in MSigDB.
Abstract: The Molecular Signatures Database (MSigDB) is one of the most widely used and comprehensive databases of gene sets for performing gene set enrichment analysis. Since its creation, MSigDB has grown beyond its roots in metabolic disease and cancer to include >10,000 gene sets. These better represent a wider range of biological processes and diseases, but the utility of the database is reduced by increased redundancy across, and heterogeneity within, gene sets. To address this challenge, here we use a combination of automated approaches and expert curation to develop a collection of “hallmark” gene sets as part of MSigDB. Each hallmark in this collection consists of a “refined” gene set, derived from multiple “founder” sets, that conveys a specific biological state or process and displays coherent expression. The hallmarks effectively summarize most of the relevant information of the original founder sets and, by reducing both variation and redundancy, provide more refined and concise inputs for gene set enrichment analysis.

6,062 citations

Journal ArticleDOI
TL;DR: A new version of the database, MSigDB 3.0, is reported, with over 6700 gene sets, a complete revision of the collection of canonical pathways and experimental signatures from publications, enhanced annotations and upgrades to the web site.
Abstract: Motivation: Well-annotated gene sets representing the universe of the biological processes are critical for meaningful and insightful interpretation of large-scale genomic data. The Molecular Signatures Database (MSigDB) is one of the most widely used repositories of such sets. Results: We report the availability of a new version of the database, MSigDB 3.0, with over 6700 gene sets, a complete revision of the collection of canonical pathways and experimental signatures from publications, enhanced annotations and upgrades to the web site. Availability and Implementation: MSigDB is freely available for non-commercial use at http://www.broadinstitute.org/msigdb. Contact: gsea@broadinstitute.org

4,128 citations

Journal ArticleDOI
30 Nov 2017-Cell
TL;DR: The expanded CMap is reported, made possible by a new, low-cost, high-throughput reduced representation expression profiling method that is shown to be highly reproducible, comparable to RNA sequencing, and suitable for computational inference of the expression levels of 81% of non-measured transcripts.

1,943 citations

Posted ContentDOI
10 May 2017-bioRxiv
TL;DR: A new, low-cost, high throughput reduced representation expression profiling method, L1000, is shown to be highly reproducible, comparable to RNA sequencing, and suitable for computational inference of the expression levels of 81% of non-measured transcripts.
Abstract: We previously piloted the concept of a Connectivity Map (CMap), whereby genes, drugs and disease states are connected by virtue of common gene-expression signatures. Here, we report more than a 1,000-fold scale-up of the CMap as part of the NIH LINCS Consortium, made possible by a new, low-cost, high throughput reduced representation expression profiling method that we term L1000. We show that L1000 is highly reproducible, comparable to RNA sequencing, and suitable for computational inference of the expression levels of 81% of non-measured transcripts. We further show that the expanded CMap can be used to discover mechanism of action of small molecules, functionally annotate genetic variants of disease genes, and inform clinical trials. The 1.3 million L1000 profiles described here, as well as tools for their analysis, are available at https://clue.io.

636 citations

Journal ArticleDOI
TL;DR: A composite prognostic model for HCC recurrence is developed, based on gene expression patterns in tumor and adjacent tissues, which predict early and overall recurrence in patients with HCC, and complement findings from clinical and pathology analyses.

375 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The philosophy and design of the limma package is reviewed, summarizing both new and historical features, with an emphasis on recent enhancements and features that have not been previously described.
Abstract: limma is an R/Bioconductor software package that provides an integrated solution for analysing data from gene expression experiments. It contains rich features for handling complex experimental designs and for information borrowing to overcome the problem of small sample sizes. Over the past decade, limma has been a popular choice for gene discovery through differential expression analyses of microarray and high-throughput PCR data. The package contains particularly strong facilities for reading, normalizing and exploring such data. Recently, the capabilities of limma have been significantly expanded in two important directions. First, the package can now perform both differential expression and differential splicing analyses of RNA sequencing (RNA-seq) data. All the downstream analysis tools previously restricted to microarray data are now available for RNA-seq as well. These capabilities allow users to analyse both RNA-seq and microarray data with very similar pipelines. Second, the package is now able to go past the traditional gene-wise expression analyses in a variety of ways, analysing expression profiles in terms of co-regulated sets of genes or in terms of higher-order expression signatures. This provides enhanced possibilities for biological interpretation of gene expression differences. This article reviews the philosophy and design of the limma package, summarizing both new and historical features, with an emphasis on recent enhancements and features that have not been previously described.

22,147 citations

Journal ArticleDOI
TL;DR: The WGCNA R software package is a comprehensive collection of R functions for performing various aspects of weighted correlation network analysis that includes functions for network construction, module detection, gene selection, calculations of topological properties, data simulation, visualization, and interfacing with external software.
Abstract: Correlation networks are increasingly being used in bioinformatics applications For example, weighted gene co-expression network analysis is a systems biology method for describing the correlation patterns among genes across microarray samples Weighted correlation network analysis (WGCNA) can be used for finding clusters (modules) of highly correlated genes, for summarizing such clusters using the module eigengene or an intramodular hub gene, for relating modules to one another and to external sample traits (using eigengene network methodology), and for calculating module membership measures Correlation networks facilitate network based gene screening methods that can be used to identify candidate biomarkers or therapeutic targets These methods have been successfully applied in various biological contexts, eg cancer, mouse genetics, yeast genetics, and analysis of brain imaging data While parts of the correlation network methodology have been described in separate publications, there is a need to provide a user-friendly, comprehensive, and consistent software implementation and an accompanying tutorial The WGCNA R software package is a comprehensive collection of R functions for performing various aspects of weighted correlation network analysis The package includes functions for network construction, module detection, gene selection, calculations of topological properties, data simulation, visualization, and interfacing with external software Along with the R package we also present R software tutorials While the methods development was motivated by gene expression data, the underlying data mining approach can be applied to a variety of different settings The WGCNA package provides R functions for weighted correlation network analysis, eg co-expression network analysis of gene expression data The R package along with its source code and additional material are freely available at http://wwwgeneticsuclaedu/labs/horvath/CoexpressionNetwork/Rpackages/WGCNA

14,243 citations

Journal ArticleDOI
TL;DR: The following Clinical Practice Guidelines will give up-to-date advice for the clinical management of patients with hepatocellular carcinoma, as well as providing an in-depth review of all the relevant data leading to the conclusions herein.

7,851 citations

Proceedings ArticleDOI
13 Aug 2016
TL;DR: Node2vec as mentioned in this paper learns a mapping of nodes to a low-dimensional space of features that maximizes the likelihood of preserving network neighborhoods of nodes by using a biased random walk procedure.
Abstract: Prediction tasks over nodes and edges in networks require careful effort in engineering features used by learning algorithms. Recent research in the broader field of representation learning has led to significant progress in automating prediction by learning the features themselves. However, present feature learning approaches are not expressive enough to capture the diversity of connectivity patterns observed in networks. Here we propose node2vec, an algorithmic framework for learning continuous feature representations for nodes in networks. In node2vec, we learn a mapping of nodes to a low-dimensional space of features that maximizes the likelihood of preserving network neighborhoods of nodes. We define a flexible notion of a node's network neighborhood and design a biased random walk procedure, which efficiently explores diverse neighborhoods. Our algorithm generalizes prior work which is based on rigid notions of network neighborhoods, and we argue that the added flexibility in exploring neighborhoods is the key to learning richer representations. We demonstrate the efficacy of node2vec over existing state-of-the-art techniques on multi-label classification and link prediction in several real-world networks from diverse domains. Taken together, our work represents a new way for efficiently learning state-of-the-art task-independent representations in complex networks.

7,072 citations

Journal ArticleDOI
TL;DR: A significant update to one of the tools in this domain called Enrichr, a comprehensive resource for curated gene sets and a search engine that accumulates biological knowledge for further biological discoveries is presented.
Abstract: Enrichment analysis is a popular method for analyzing gene sets generated by genome-wide experiments. Here we present a significant update to one of the tools in this domain called Enrichr. Enrichr currently contains a large collection of diverse gene set libraries available for analysis and download. In total, Enrichr currently contains 180 184 annotated gene sets from 102 gene set libraries. New features have been added to Enrichr including the ability to submit fuzzy sets, upload BED files, improved application programming interface and visualization of the results as clustergrams. Overall, Enrichr is a comprehensive resource for curated gene sets and a search engine that accumulates biological knowledge for further biological discoveries. Enrichr is freely available at: http://amp.pharm.mssm.edu/Enrichr.

6,201 citations