scispace - formally typeset
Search or ask a question
Author

Arthur N. Palmer

Bio: Arthur N. Palmer is an academic researcher from State University of New York System. The author has contributed to research in topics: Cave & Karst. The author has an hindex of 15, co-authored 33 publications receiving 2021 citations. Previous affiliations of Arthur N. Palmer include State University of New York at Oneonta.
Topics: Cave, Karst, Speleogenesis, Hypogene, Phreatic

Papers
More filters
Journal ArticleDOI
TL;DR: The time required to reach the maximum rate is nearly independent of kinetics and varies directly with flow distance and temperature and inversely with initial fracture width, discharge, gradient, and PCO2 as mentioned in this paper.
Abstract: Limestone caves form along ground-water paths of greatest discharge and solutional aggressiveness. Flow routes that acquire increasing discharge accelerate in growth, while others languish with negligible growth. As discharge increases, a maximum rate of wall retreat is approached, typically about 0.01-0.1 cm/yr, determined by chemical kinetics but nearly unaffected by further increase in discharge. The time required to reach the maximum rate is nearly independent of kinetics and varies directly with flow distance and temperature and inversely with initial fracture width, discharge, gradient, and PCO2. Most caves require 104 - 105 yr to reach traversable size. Their patterns depend on the mode of ground-water recharge. Sinkhole recharge forms branching caves with tributaries that join downstream as higher-order passages. Maze caves form where (1) steep gradients and great undersaturation allow many alternate paths to enlarge at similar rates or (2) discharge or renewal of undersaturation is uniform along many alternate routes. Flood water can form angular networks in fractured rock, anastomotic mazes along low-angle partings, or sponge-work where intergranular pores are dominant. Diffuse recharge also forms networks and spongework, often aided by mixing of chemically different waters. Ramiform caves, with sequential outward branches, are formed mainly by rising thermal or H2S-rich water. Dissolution rates in cooling water increase with discharge, CO2 content, temperature, and thermal gradient, but only at thermal gradients of more than 0.01 °C/m can normal ground-water CO2 form caves without the aid of hypogenic acids or mixing. Artesian flow has no inherent tendency to form maze caves. Geologic structure and stratigraphy influence cave orientation and extent, but alone they do not determine branch-work versus maze character.

909 citations

Journal ArticleDOI
TL;DR: The history of 3.5 m.y. of water table position, governed by incision and aggradation of the Green River, a tributary of the Ohio River, is described in this article.
Abstract: Cosmogenic 26Al and 10Be in sediments washed into Mammoth Cave, Kentucky, record the history of 3.5 m.y. of water-table position, governed by incision and aggradation of the Green River, a tributary of the Ohio River. Upper levels of the cave formed during a period of slow river incision and were later filled with sediment due to river aggradation at 2.3–2.4 Ma. A brief surge of river incision ca. 2 Ma was followed by river stability and cave-passage formation at a lower level. Rapid incision through 15 m of bedrock ca. 1.5 Ma was prompted by repositioning of the Ohio River to its present course along an ice-sheet margin. Renewed incision ca. 1.2 Ma and aggradation at 0.7–0.8 Ma correlate with major ice advances in the Ohio River basin. Measurements of 26Al and 10Be also indicate that sandstone-capped uplands have maintained slow erosion rates of 2–7 m/m.y. for the past 3.5 m.y., despite accelerated Pleistocene river incision rates of ∼30 m/m.y.

281 citations

Journal ArticleDOI
TL;DR: Cueva de Villa Luz, a hypogenic cave in Tabasco, Mexico, offers a remarkable opportunity to observe chemotrophic microbial interactions within a karst environment as mentioned in this paper.

219 citations

Journal ArticleDOI
TL;DR: The fourth and tenth longest known cave systems are Wind Cave and Jewel Cave as discussed by the authors, respectively, the world9s foremost examples of three-dimensional, rectilinear networks of solutional passages.
Abstract: Jewel Cave (118 km of mapped passages beneath an area of 2.7 km 2 ) and Wind Cave (70 km beneath 1.8 km 2 ) are, respectively, the fourth and tenth longest known cave systems and the world9s foremost examples of three-dimensional, rectilinear networks of solutional passages. Other caves in the Black Hills are similar. They occur in 90–140 m of well-bedded Mississippian limestone and dolomite. Walls throughout Jewel Cave are lined with euhedral calcite spar as much as 15 cm thick. Wind Cave displays lesser encrustations and remarkable calcite boxwork. Since 1938, opinion has favored cave excavation by slowly circulating meteoric waters in artesian confinement similar to that surrounding the Black Hills. We believe that the caves were developed by regional thermal waters focusing on paleospring outlets in outlying sandstones. Four sets of criteria are evaluated: (1) morphological—the three-dimensional, one-phase maze form having convectional features is similar to known and supposed thermal caves in Europe; (2) petrographic and mineralogical study of the chief precipitates shows a record of carbonate solution → calcite precipitation consonant with a model of cooling, then degassing, waters; (3) a thermal anomaly at regional hot springs is shown to extend beneath Wind Cave, where basal lake-water samples show chemical and isotopic affinities with the thermal waters; and (4) δ 13 C and δ 18 O measurements place all suspected paleothermal water precipitates in the domain of thermal calcites reported by others and being deposited at the modern hot springs. Finally, U-series dates show that the Wind Cave deposits are Quaternary and that the cave is still draining. Jewel Cave is truly relict and divorced from the modern thermal ground-water system; its great calcite spar sheets are probably older than 1.25–1.50 Ma.

118 citations


Cited by
More filters
Book
23 Apr 2007
TL;DR: In this article, the authors discuss the relationship between Karst and general geomorphology and Hydrogeology and discuss the development of Karst underground systems, and present a detailed analysis of these systems.
Abstract: CHAPTER 1. INTRODUCTION TO KARST. 1.1 Definitions. 1.2 The Relationship Between Karst And General Geomorphology And Hydrogeology. 1.3 The Global Distribution Of Karst. 1.4 The Growth Of Ideas. 1.5 Aims Of The Book. 1.6 Karst Terminology. CHAPTER 2. THE KARST ROCKS. 2.1 Carbonate Rocks And Minerals. 2.2 Limestone Compositions And Depositional Facies. 2.3 Limestone Diagenesis And The Formation Of Dolomite. 2.4 The Evaporite Rocks. 2.5. Quartzites And Siliceous Sandstones. 2.6 Effects Of Lithologic Properties Upon Karst Development. 2.7 Interbedded Clastic Rocks. 2.8 Bedding Planes, Joints, Faults And Fracture Traces. 2.9 Fold Topography. 2.10 Paleokarst Unconformities. CHAPTER 3. DISSOLUTION: CHEMICAL AND KINETIC BEHAVIOUR OF THE KARST ROCKS. 3.1 Introduction. 3.2 Aqueous Solutions And Chemical Equilibria. 3.3 The Dissolution Of Anhydrite, Gypsum And Salt. 3.4 The Dissolution Of Silica. 3.5 Bicarbonate Equilibria And The Dissolution Of Carbonate Rocks In Normal Meteoric Waters. 3.6 The S-O-H System And The Dissolution Of Carbonate Rocks. 3.7 Chemical Complications In Carbonate Dissolution. 3.8 Biokarst Processes. 3.9 Measurements In The Field And Lab Computer Programs. 3.10 Dissolution And Precipitation Kinetics Of Karst Rocks. CHAPTER 4. DISTRIBUTION AND RATE OF KARST DENUDATION. 4.1 Global Variations In The Solutional Denudation Of Carbonate Terrains. 4.2 Measurement And Calculation Of Solutional Denudation Rates. 4.3 Solution Rates In Gypsum, Salt And Other Non-Carbonate Rocks. 4.4 Interpretation Of Measurements. CHAPTER 5. KARST HYDROLOGY. 5.1 Basic Hydrological Concepts, Terms And Definitions. 5.2 Controls On The Development Of Karst Hydrologic Systems. 5.3 Energy Supply And Flow Network Development. 5.4 Development Of The Water Table And Phreatic Zones. 5.5 Development Of The Vadose Zone. 5.6 Classification And Characteristics Of Karst Aquifers. 5.7 Applicability Of Darcy's Law To Karst. 5.8 The Fresh Water/Salt Water Interface. CHAPTER 6. ANALYSIS OF KARST DRAINAGE SYSTEMS. 6.1 The 'Grey Box' Nature Of Karst. 6.2 Surface Exploration And Survey Techniques. 6.3 Investigating Recharge And Percolation In The Vadose Zone. 6.4 Borehole Analysis. 6.5 Spring Hydrograph Analysis. 6.6 Polje Hydrograph Analysis. 6.7 Spring Chemograph Interpretation. 6.8 Storage Volumes And Flow Routing Under Different States Of The Hydrograph. 6.9 Interpreting The Organisation Of A Karst Aquifer. 6.10 Water Tracing Techniques. 6.11 Computer Modelling Of Karst Aquifers. CHAPTER 7. SPELEOGENESIS: THE DEVELOPMENT OF CAVE SYSTEMS. 7.1 Classifying Cave Systems. 7.2 Building The Plan Patterns Of Unconfined Caves. 7.3 Unconfined Cave Development In Length And Depth. 7.4 System Modifications Occurring Within A Single Phase. 7.5 Multi-Phase Cave Systems. 7.6 Meteoric Water Caves Developed Where There Is Confined Circulation Or Basal Injection Of Water. 7.7 Hypogene Caves: (A) Hydrothermal Caves Associated Chiefly With Co2. 7.8 Hypogene Caves: (B) Caves Formed By Waters Containing H2s. 7.9 Sea Coast Eogenetic Caves. 7.10 Passage Cross-Sections And Smaller Features Of Erosional Morphology. 7.11 Condensation, Condensation Corrosion, And Weathering In Caves. 7.12 Breakdown In Caves. CHAPTER 8. CAVE INTERIOR DEPOSITS. 8.1 Introduction. 8.2 Clastic Sediments. 8.3 Calcite, Aragonite And Other Carbonate Precipitates. 8.4 Other Cave Minerals. 8.5 Ice In Caves. 8.6 Dating Of Calcite Speleothems And Other Cave Deposits. 8.7 Paleo-Environmental Analysis Of Calcite Speleothems. 8.8 Mass Flux Through A Cave System: The Example Of Friar's Hole, W.Va. CHAPTER 9. KARST LANDFORM DEVELOPMENT IN HUMID REGIONS. 9.1 Coupled Hydrological And Geochemical Systems. 9.2 Small Scale Solution Sculpture - Microkarren And Karren. 9.3 Dolines - The 'Diagnostic' Karst Landform? 9.4 The Origin And Development Of Solution Dolines. 9.5 The Origin Of Collapse And Subsidence Depressions. 9.6 Polygonal Karst. 9.7 Morphometric Analysis Of Solution Dolines. 9.8 Landforms Associated With Allogenic Inputs. 9.9 Karst Poljes. 9.10 Corrosional Plains And Shifts In Baselevel. 9.11 Residual Hills On Karst Plains. 9.12 Depositional And Constructional Karst Features. 9.13 Special Features Of Evaporite Terrains. 9.14 Karstic Features Of Quartzose And Other Rocks. 9.15 Sequences Of Carbonate Karst Evolution In Humid Terrains. CHAPTER 10.THE INFLUENCE OF CLIMATE, CLIMATIC CHANGE AND OTHER ENVIRONMENTAL FACTORS ON KARST DEVELOPMENT. 10.1 The Precepts Of Climatic Geomorphology. 10.2 The Hot Arid Extreme. 10.3 The Cold Extreme: 1 Karst Development In Glaciated Terrains. 10.4 The Cold Extreme: 2 Karst Development In Permafrozen Terrains. 10.5 Sea Level Changes, Tectonic Movement And Implications For Coastal Karst Development. 10.6 Polycyclic, Polygenetic And Exhumed Karsts. CHAPTER 11. KARST WATER RESOURCES MANAGEMENT. 11.1 Water Resources And Sustainable Yields. 11.2 Determination Of Available Water Resources. 11.3 Karst Hydrogeological Mapping. 11.4 Human Impacts On Karst Water. 11.5 Groundwater Vulnerability, Protection, And Risk Mapping. 11.6 Dam Building, Leakages, Failures And Impacts. CHAPTER 12. HUMAN IMPACTS AND ENVIRONMENTAL REHABILITATION. 12.1 The Inherent Vulnerability Of Karst Systems. 12.2 Deforestation, Agricultural Impacts And Rocky Desertification. 12.3 Sinkholes Induced By De-Watering, Surcharging, Solution Mining And Other Practices On Karst. 12.4 Problems Of Construction On And In The Karst Rocks - Expect The Unexpected! 12.5 Industrial Exploitation Of Karst Rocks And Minerals. 12.6 Restoration Of Karstlands And Rehabilitation Of Limestone Quarries. 12.7 Sustainable Management Of Karst. 12.8 Scientific, Cultural And Recreational Values Of Karstlands.

2,108 citations

Journal ArticleDOI
TL;DR: In this article, the authors use three-dimensional seismic imagery and seismic anomaly mapping, combined with horizontal drilling oblique to linear trends defined by structural sags, helps to reduce risk.
Abstract: Structurally controlled hydrothermal dolomite (HTD) reservoir facies and associated productive leached limestones are major hydrocarbon producers in North America and are receiving increased exploration attention globally. They include multiple trends in the Ordovician (locally, Silurian and Devonian) of the Michigan, Appalachian, and other basins of eastern Canada and the United States, and in the Devonian and Mississippian of the Western Canada sedimentary basin. They also occur in Jurassic hosts along rifted Atlantic margins, in the Jurassic–Cretaceous of the Arabian Gulf region and elsewhere. Hydrothermal dolomitization is defined as dolomitization occurring under burial conditions, commonly at shallow depths, by fluids (typically very saline) with temperature and pressure (T and P) higher than the ambient T and P of the host formation. The latter commonly is limestone. Proof of a hydrothermal origin for HTD reservoir facies requires integration of burial-thermal history plots, fluid-inclusion temperature data, and constraints on timing of emplacement. Hydrothermal dolomite reservoir facies are part of a spectrum of hydrothermal mineral deposits that include sedimentary-exhalative lead-zinc ore bodies and HTD-hosted Mississippi Valley–type sulfide deposits. All three hydrothermal deposits show a strong structural control by extensional and/or strike-slip (wrench) faults, with fluid flow typically focused at transtensional and dilational structural sites and in the hanging wall. Transtensional sags above negative flower structures on wrench faults are favored drilling sites for HTD reservoir facies. Saddle dolomite in both replacive and void-filling modes is characteristic of HTD facies. For many reservoirs, matrix-replacive dolomite and saddle dolomite appear to have formed near-contemporaneously and from the same fluid and temperature conditions. The original host facies exerts a major influence on the lateral extent of dolomitization, resultant textures, pore type, and pore volume. Breccias, zebra fabrics, shear microfractures, and other rock characteristics record short-term shear stress and pore-fluid-pressure transients, particularly proximal to active faults. High-temperature hydrothermal pulses may alter kerogen in host limestones, a process designated “forced maturation.” Basement highs, underlying sandstone (and/or carbonate?) aquifers (probably overpressured), and overlying and internal shale seals and aquitards also may constrain or influence HTD emplacement. Although many questions and uncertainties remain, particularly in terms of Mg and brine source and mass balance, recognition and active exploration of the HTD play continues to expand. Increasing use of three-dimensional seismic imagery and seismic anomaly mapping, combined with horizontal drilling oblique to linear trends defined by structural sags, helps to reduce risk.

641 citations

Journal ArticleDOI
TL;DR: In this paper, a process-based summary of the multiple controls on speleothem oxygen-isotope values (d 18 O) in the atmosphere, soil, epikarst, and calcite, illustrated with case studies is presented.

615 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used in-situ produced cosmogenic nuclides (e.g. 10Be, 26Al), mostly in quartz from alluvial sediment.

605 citations

Journal ArticleDOI
11 Apr 2012-PLOS ONE
TL;DR: A screen of a sample of the culturable microbiome of Lechuguilla Cave, New Mexico, in a region of the cave that has been isolated for over 4 million years reported that, like surface microbes, these bacteria were highly resistant to antibiotics; some strains were resistant to 14 different commercially available antibiotics.
Abstract: Antibiotic resistance is a global challenge that impacts all pharmaceutically used antibiotics. The origin of the genes associated with this resistance is of significant importance to our understanding of the evolution and dissemination of antibiotic resistance in pathogens. A growing body of evidence implicates environmental organisms as reservoirs of these resistance genes; however, the role of anthropogenic use of antibiotics in the emergence of these genes is controversial. We report a screen of a sample of the culturable microbiome of Lechuguilla Cave, New Mexico, in a region of the cave that has been isolated for over 4 million years. We report that, like surface microbes, these bacteria were highly resistant to antibiotics; some strains were resistant to 14 different commercially available antibiotics. Resistance was detected to a wide range of structurally different antibiotics including daptomycin, an antibiotic of last resort in the treatment of drug resistant Gram-positive pathogens. Enzyme-mediated mechanisms of resistance were also discovered for natural and semi-synthetic macrolide antibiotics via glycosylation and through a kinase-mediated phosphorylation mechanism. Sequencing of the genome of one of the resistant bacteria identified a macrolide kinase encoding gene and characterization of its product revealed it to be related to a known family of kinases circulating in modern drug resistant pathogens. The implications of this study are significant to our understanding of the prevalence of resistance, even in microbiomes isolated from human use of antibiotics. This supports a growing understanding that antibiotic resistance is natural, ancient, and hard wired in the microbial pangenome.

587 citations