scispace - formally typeset
Search or ask a question
Author

Arti Yadav

Bio: Arti Yadav is an academic researcher from Newcastle University. The author has contributed to research in topics: Coating & Nanoporous. The author has an hindex of 4, co-authored 14 publications receiving 33 citations. Previous affiliations of Arti Yadav include Indian Institute of Science & Durham University.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the effect of infill density on tensile strength and Young's modulus of 3D printed polymers has been investigated and a constitutive model derived from the laminate plate theory was employed.
Abstract: 3D printing by fused filament fabrication (FFF) provides an innovative manufacturing method for complex geometry components. Since FFF is a layered manufacturing process, effects of process parameters are of concern when plastic materials such as polylactic acid (PLA), polystyrene and nylon are used. This study explores how the process parameters, e.g. build orientation and infill pattern/density, affect the mechanical response of PLA samples produced using FFF. Digital image correlation (DIC) was employed to get full-field surface-strain measurements. The results show the influence of build orientation and infill density is significant. For on-edge orientation, the tensile strength and Young’s modulus were 55 MPa and 3.5 GPa respectively, which were about 91% and 40% less for the upright orientation, demonstrating a significant anisotropy. The tensile strength and Young’s modulus increased with increasing infill density. In contrast, different infill patterns have no significant effect. Considering the influence of build orientation, based on the experimental results, a constitutive model derived from the laminate plate theory was employed. The material parameters were determined by tensile tests. Results demonstrated a reasonable agreement between the experimental data and the predictive model. Similar anisotropy to tension was observed in shear tests; shear modulus and shear strength for 45° flat orientation were about 1.55 GPa and 36 MPa, whereas for upright specimens they were about 0.95 GPa and 18 MPa, respectively. The findings provide a framework for systematic mechanical characterisation of 3D-printed polymers and potential ways of choosing process parameters to maximise performance for a given design.

73 citations

Journal ArticleDOI
TL;DR: In this article, a numerical homogenization technique is developed to predict the effect of printing process parameters on the elastic response of 3D printed parts with cellular lattice structures, which is based on a multi-scale approach.
Abstract: Although the literature is abundant with the experimental methods to characterize mechanical behavior of parts made by fused filament fabrication 3D printing, less attention has been paid in using computational models to predict the mechanical properties of these parts. In the present paper, a numerical homogenization technique is developed to predict the effect of printing process parameters on the elastic response of 3D printed parts with cellular lattice structures. The development of finite element computational models of printed parts is based on a multi scale approach. Initially, at the micro scale level, the analysis of micro-mechanical models of a representative volume element is used to calculate the effective orthotropic properties. The finite element models include different infill densities and building/raster orientation maintaining the bonded region between the adjacent fibers and layers. The elastic constants obtained by this method are then used as an input for the creation of macro scale finite element models enabling the simulation of the mechanical response of printed samples subjected to the bending, shear, and tensile loads. Finally, the results obtained by the homogenization technique are validated against more realistic finite element explicit microstructural models and experimental measurements. The results show that, providing an accurate characterization of the properties to be fed into the macro scale model, the use of the homogenization technique is a reliable tool to predict the elastic response of 3D printed parts. The outlined approach provides faster iterative design of 3D printed parts, contributing to reducing the number of experimental replicates and fabrication costs.

23 citations

Journal ArticleDOI
01 Feb 2021
TL;DR: In this article, a failure analysis based on the Digital Image Correlation method was performed to identify damaged zones on the test coupon surface and to follow failure progression during the fatigue tests.
Abstract: Glass fibre reinforced polymer composites are frequently used in marine applications where the combined effects of cyclic loads and the seawater environment limit their fatigue life. This paper aims to demonstrate the degradation that seawater causes to the stiffness of the composites. Three-point bending fatigue properties of cross-ply woven glass fibre composites commonly used to manufacture tidal turbine blades are reported for both wet and dry conditions. Failure analysis based on the Digital Image Correlation method was performed to identify damaged zones on the test coupon surface and to follow failure progression during the fatigue tests. To characterize the damage in the composite, stiffness degradation has been monitored during the entire fatigue history. Scanning electron microscopy was used to identify multiple failure mechanisms on the specimen fracture surface. In addition, for further verification of microscopy results, X-Ray Micro-computed tomography, was used to characterize the internal damage such as delamination. From the full-field strain measurement technique and microscopic examination of failed samples, it was found that distributed localized strains are evidence of the number of resin cracks and de-bonded areas. SEM examination shows a degraded fibre/matrix interface region due to the action of seawater.

12 citations

Journal ArticleDOI
TL;DR: In this paper, a design methodology based on hydrodynamic and Finite Element models with a view to examine the mechanical properties of composites was developed to evaluate the structural response of two commercial scale turbine blades (1.5 and 0.35 MW).

12 citations

Journal ArticleDOI
TL;DR: In this study a fabrication method for highly aligned and densely packed copper nanowires with controlled length using pulse-electrodeposition and a nanoporous alumina template has been developed.
Abstract: Metallic nanowire networks are emerging as potential replacements for transparent conducting oxide coatings because of their high conductivity, flexibility and relative transparency. However, a cheap, reliable and controlled manufacturing process is required to exploit this and the surface of the copper nanowire needs to be protected if high conductivity is to be retained. In this study a fabrication method for highly aligned and densely packed copper nanowires with controlled length using pulse-electrodeposition and a nanoporous alumina template has been developed. Nanoporous alumina was obtained by anodisation of pure aluminum in oxalic acid using a two-step anodisation process. In order to provide the conductivity at the bottom of the pores, a dendritic structure at the interface was created through the stepwise voltage reduction method with a voltage reduction rate of 15 V/s followed by mild chemical etching. Highly repeatable near 100% filling of copper is achieved. Copper nanowire length was highly controllable from 100 nm to 2 μm with a fixed diameter of 60 ± 5 nm by monitoring current density during the deposition. Such controlled growth of Cu nanowires could lead towards transparent conducting layer applications but the protection of the material against oxidation remains an issue.

7 citations


Cited by
More filters
Journal ArticleDOI
29 Mar 2021
TL;DR: Nanomaterials have emerged as an amazing class of materials that consists of a broad spectrum of examples with at least one dimension in the range of 1 to 100 nm as discussed by the authors.
Abstract: Nanomaterials have emerged as an amazing class of materials that consists of a broad spectrum of examples with at least one dimension in the range of 1 to 100 nm. Exceptionally high surface areas can be achieved through the rational design of nanomaterials. Nanomaterials can be produced with outstanding magnetic, electrical, optical, mechanical, and catalytic properties that are substantially different from their bulk counterparts. The nanomaterial properties can be tuned as desired via precisely controlling the size, shape, synthesis conditions, and appropriate functionalization. This review discusses a brief history of nanomaterials and their use throughout history to trigger advances in nanotechnology development. In particular, we describe and define various terms relating to nanomaterials. Various nanomaterial synthesis methods, including top-down and bottom-up approaches, are discussed. The unique features of nanomaterials are highlighted throughout the review. This review describes advances in nanomaterials, specifically fullerenes, carbon nanotubes, graphene, carbon quantum dots, nanodiamonds, carbon nanohorns, nanoporous materials, core–shell nanoparticles, silicene, antimonene, MXenes, 2D MOF nanosheets, boron nitride nanosheets, layered double hydroxides, and metal-based nanomaterials. Finally, we conclude by discussing challenges and future perspectives relating to nanomaterials.

628 citations

Journal ArticleDOI
20 Jul 2021-Polymers
TL;DR: In this article, the effect of the ultraviolet (UV) curing process on PLA materials was investigated and the results showed that the printing and raster angles have a high impact on the tensile properties of PLA materials.
Abstract: In order to optimize the efficiency of the Fused deposition modeling (FDM) process, this study used polylactic acid (PLA) material under different parameters (the printing angle and the raster angle) to fabricate specimens and to explore its tensile properties. The effect of the ultraviolet (UV) curing process on PLA materials was also investigated. The results showed that the printing and raster angles have a high impact on the tensile properties of PLA materials. The UV curing process enhanced the brittleness and reduced the elongation of PLA material. Different effects were observed on tensile strength and modulus of specimens printed with different parameters after UV curing. The above results will be a great help for researchers who are working to achieve sustainability of PLA materials and FDM technology.

29 citations

Journal ArticleDOI
TL;DR: In this article, the authors used anodic aluminum oxide (PAAO) films as a porous template for the preparation of various nanomaterials and showed that fine control of the thickness of AAO films is generally quite easy to achieve.

26 citations

Journal ArticleDOI
23 Feb 2022-Polymers
TL;DR: In this article , a systematic review of the research targeting the influence of process parameters on the mechanical properties of PLA specimens additively manufactured by fused filament fabrication was carried out by the authors.
Abstract: Polylactic acid (PLA) is produced from renewable materials, has a low melting temperature and has a low carbon footprint. These advantages have led to the extensive use of polylactic acid in additive manufacturing, particularly by fused filament fabrication (FFF). PLA parts that are 3D printed for industrial applications require stable mechanical properties and predictability regarding their dependence on the process parameters. Therefore, the development of the FFF process has been continuously accompanied by the development of software packages that generate CNC codes for the printers. A large number of user-controllable process parameters have been introduced in these software packages. In this respect, a lot of articles in the specialized literature address the issue of the influence of the process parameters on the mechanical properties of 3D-printed specimens. A systematic review of the research targeting the influence of process parameters on the mechanical properties of PLA specimens additively manufactured by fused filament fabrication was carried out by the authors of this paper. Six process parameters (layer thickness, printing speed, printing temperature, build plate temperature, build orientation and raster angle) were followed. The mechanical behavior was evaluated by tensile, compressive and bending properties.

25 citations

Journal ArticleDOI
TL;DR: In this article, a numerical homogenization technique is developed to predict the effect of printing process parameters on the elastic response of 3D printed parts with cellular lattice structures, which is based on a multi-scale approach.
Abstract: Although the literature is abundant with the experimental methods to characterize mechanical behavior of parts made by fused filament fabrication 3D printing, less attention has been paid in using computational models to predict the mechanical properties of these parts. In the present paper, a numerical homogenization technique is developed to predict the effect of printing process parameters on the elastic response of 3D printed parts with cellular lattice structures. The development of finite element computational models of printed parts is based on a multi scale approach. Initially, at the micro scale level, the analysis of micro-mechanical models of a representative volume element is used to calculate the effective orthotropic properties. The finite element models include different infill densities and building/raster orientation maintaining the bonded region between the adjacent fibers and layers. The elastic constants obtained by this method are then used as an input for the creation of macro scale finite element models enabling the simulation of the mechanical response of printed samples subjected to the bending, shear, and tensile loads. Finally, the results obtained by the homogenization technique are validated against more realistic finite element explicit microstructural models and experimental measurements. The results show that, providing an accurate characterization of the properties to be fed into the macro scale model, the use of the homogenization technique is a reliable tool to predict the elastic response of 3D printed parts. The outlined approach provides faster iterative design of 3D printed parts, contributing to reducing the number of experimental replicates and fabrication costs.

23 citations