scispace - formally typeset
Search or ask a question
Author

Artur F. Izmaylov

Bio: Artur F. Izmaylov is an academic researcher from University of Toronto. The author has contributed to research in topics: Neutrino & Hamiltonian (quantum mechanics). The author has an hindex of 40, co-authored 162 publications receiving 9487 citations. Previous affiliations of Artur F. Izmaylov include Pierre-and-Marie-Curie University & Rice University.


Papers
More filters
Journal ArticleDOI
TL;DR: This work reexamines the effect of the exchange screening parameter omega on the performance of the Heyd-Scuseria-Ernzerhof (HSE) screened hybrid functional and recommends a new version of HSE with the screened parameter omega=0.11 bohr(-1) for further use.
Abstract: This work reexamines the effect of the exchange screening parameter ω on the performance of the Heyd-Scuseria-Ernzerhof (HSE) screened hybrid functional. We show that variation of the screening parameter influences solid band gaps the most. Other properties such as molecular thermochemistry or lattice constants of solids change little with ω. We recommend a new version of HSE with the screening parameter ω=0.11bohr−1 for further use. Compared to the original implementation, the new parametrization yields better thermochemical results and preserves the good accuracy for band gaps and lattice constants in solids.

4,625 citations

Journal Article
TL;DR: In this paper, the physics program for the Deep Underground Neutrino Experiment (DUNE) at the Fermilab Long-Baseline Neurtrino Facility (LBNF) is described.
Abstract: The Physics Program for the Deep Underground Neutrino Experiment (DUNE) at the Fermilab Long-Baseline Neutrino Facility (LBNF) is described.

422 citations

Journal ArticleDOI
TL;DR: It is shown that at least for the Heyd-Scuseria-Ernzerhof (HSE) screened hybrid, for many properties improved by long-range-correction, screened hybrids and global hybrids deliver essentially the same results.
Abstract: Long-range-corrected hybrids, which incorporate all of the long-range exact exchange interaction, improve performance for a host of molecular properties. The long-range portion of exact exchange is both computationally and formally problematic in solids, and screened hybrids therefore eliminate it. While screened hybrids give similar results to their parent global hybrids for many molecular properties, one may worry that they perform poorly for those properties that are improved by the long-range-correction procedure. In this paper, we show that at least for the Heyd–Scuseria–Ernzerhof (HSE) screened hybrid, this is not the case; for many properties improved by long-range-correction, screened hybrids and global hybrids deliver essentially the same results. We suggest that this is because screened hybrids and global hybrids have fundamentally the same many-electron self-interaction error. We also introduce some small revisions to our computational implementation of the HSE screened hybrid, and we recommend these revisions for future applications of HSE.

417 citations

Journal Article
TL;DR: Hyper-Kamiokande as mentioned in this paper is the third generation water Cherenkov detector, which is being developed by an international collaboration as a leading worldwide experiment based in Japan and will be hosted in the Tochibora mine, about 295 km away from the J-PARC proton accelerator in Tokai, Japan.
Abstract: On the strength of a double Nobel prize winning experiment (Super)Kamiokande and an extremely successful long baseline neutrino programme, the third generation Water Cherenkov detector, Hyper-Kamiokande, is being developed by an international collaboration as a leading worldwide experiment based in Japan. The Hyper-Kamiokande detector will be hosted in the Tochibora mine, about 295 km away from the J-PARC proton accelerator research complex in Tokai, Japan. The currently existing accelerator will be steadily upgraded to reach a MW beam by the start of the experiment. A suite of near detectors will be vital to constrain the beam for neutrino oscillation measurements. A new cavern will be excavated at the Tochibora mine to host the detector. The experiment will be the largest underground water Cherenkov detector in the world and will be instrumented with new technology photosensors, faster and with higher quantum efficiency than the ones in Super-Kamiokande. The science that will be developed will be able to shape the future theoretical framework and generations of experiments. Hyper-Kamiokande will be able to measure with the highest precision the leptonic CP violation that could explain the baryon asymmetry in the Universe. The experiment also has a demonstrated excellent capability to search for proton decay, providing a significant improvement in discovery sensitivity over current searches for the proton lifetime. The atmospheric neutrinos will allow to determine the neutrino mass ordering and, together with the beam, able to precisely test the three-flavour neutrino oscillation paradigm and search for new phenomena. A strong astrophysical programme will be carried out at the experiment that will also allow to measure precisely solar neutrino oscillation.

274 citations

18 Dec 2015
TL;DR: In this paper, the physics program for the Deep Underground Neutrino Experiment (DUNE) at the Fermilab Long-Baseline Neurtrino Facility (LBNF) is described.
Abstract: The Physics Program for the Deep Underground Neutrino Experiment (DUNE) at the Fermilab Long-Baseline Neutrino Facility (LBNF) is described.

243 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
TL;DR: In this article, a few-layer black phosphorus crystals with thickness down to a few nanometres are used to construct field effect transistors for nanoelectronic devices. But the performance of these materials is limited.
Abstract: Two-dimensional crystals have emerged as a class of materials that may impact future electronic technologies. Experimentally identifying and characterizing new functional two-dimensional materials is challenging, but also potentially rewarding. Here, we fabricate field-effect transistors based on few-layer black phosphorus crystals with thickness down to a few nanometres. Reliable transistor performance is achieved at room temperature in samples thinner than 7.5 nm, with drain current modulation on the order of 10(5) and well-developed current saturation in the I-V characteristics. The charge-carrier mobility is found to be thickness-dependent, with the highest values up to ∼ 1,000 cm(2) V(-1) s(-1) obtained for a thickness of ∼ 10 nm. Our results demonstrate the potential of black phosphorus thin crystals as a new two-dimensional material for applications in nanoelectronic devices.

6,924 citations

Journal ArticleDOI
TL;DR: This work reexamines the effect of the exchange screening parameter omega on the performance of the Heyd-Scuseria-Ernzerhof (HSE) screened hybrid functional and recommends a new version of HSE with the screened parameter omega=0.11 bohr(-1) for further use.
Abstract: This work reexamines the effect of the exchange screening parameter ω on the performance of the Heyd-Scuseria-Ernzerhof (HSE) screened hybrid functional. We show that variation of the screening parameter influences solid band gaps the most. Other properties such as molecular thermochemistry or lattice constants of solids change little with ω. We recommend a new version of HSE with the screening parameter ω=0.11bohr−1 for further use. Compared to the original implementation, the new parametrization yields better thermochemical results and preserves the good accuracy for band gaps and lattice constants in solids.

4,625 citations