scispace - formally typeset
Search or ask a question
Author

Arturo A. Ayon

Bio: Arturo A. Ayon is an academic researcher from University of Texas at San Antonio. The author has contributed to research in topics: Silicon & Quantum dot. The author has an hindex of 34, co-authored 142 publications receiving 4331 citations. Previous affiliations of Arturo A. Ayon include University of Texas System & Massachusetts Institute of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors report the experimentally obtained response surfaces of silicon etching rate, aspect ratio dependent etching (ARDE), photoresist etch rate, and anisotropy parameter in a time multiplexed inductively coupled plasma etcher.
Abstract: We report the experimentally obtained response surfaces of silicon etching rate, aspect ratio dependent etching (ARDE), photoresist etching rate, and anisotropy parameter in a time multiplexed inductively coupled plasma etcher. The data were collected whi le varying eight etching variables. The relevance of electrode power, pressure, and gas flow rates is presented and has been found t o agree with observations reported in the literature. The observed behavior presented in this report serves as a tool to locate a nd optimize operating conditions to etch high aspect ratio structures. The performance of this deep reactive ion etcher allows the tai loring of silicon etching rates in excess of 4 mm/min with anisotropic profiles, nonuniformities of less than 4% across the wafer, and ARDE control with a depth variation of less than 1 mm for trenches of dissimilar width. Furthermore it is possible to prescribe the slope of etched trenches from positive to reentrant. © 1999 The Electrochemical Society. S0013-4651(98)01-009-X. All rights reserved.

476 citations

Journal ArticleDOI
TL;DR: In this article, a set of experiments was designed and performed to fully characterize the sensitivity of surface morphology and mechanical behavior of silicon samples produced with different DRIE operating conditions, and the data was then fitted to response surfaces to model the dependence of response variables on dry processing conditions.
Abstract: The ability to predict and control the influence of process parameters during silicon etching is vital for the success of most MEMS devices. In the case of deep reactive ion etching (DRIE) of silicon substrates, experimental results indicate that etch performance as well as surface morphology and post-etch mechanical behavior have a strong dependence on processing parameters. In order to understand the influence of these parameters, a set of experiments was designed and performed to fully characterize the sensitivity of surface morphology and mechanical behavior of silicon samples produced with different DRIE operating conditions. The designed experiment involved a matrix of 55 silicon wafers with radius hub flexure (RHF) specimens which were etched 10 min under varying DRIE processing conditions. Data collected by interferometry, atomic force microscopy (AFM), profilometry, and scanning electron microscopy (SEM), was used to determine the response of etching performance to operating conditions. The data collected for fracture strength was analyzed and modeled by finite element computation. The data was then fitted to response surfaces to model the dependence of response variables on dry processing conditions.

279 citations

Journal ArticleDOI
TL;DR: In this article, the authors present the design, fabrication, packaging, and experimental test results for the 6-wafer combustion system for a silicon microengine, which is largely fabricated by deep reactive ion etching through a total thickness of 3800 /spl mu/m.
Abstract: As part of a program to develop a micro gas turbine engine capable of producing 10-50 W of electrical power in a package less than one cubic centimeter in volume, we present the design, fabrication, packaging, and experimental test results for the 6-wafer combustion system for a silicon microengine. Comprising the main nonrotating functional components of the engine, the device described measures 2.1 cm/spl times/2.1 cm/spl times/0.38 cm and is largely fabricated by deep reactive ion etching through a total thickness of 3800 /spl mu/m. Complete with a set of fuel plenums, pressure ports, fuel injectors, igniters, fluidic interconnects, and compressor and turbine static airfoils, this structure is the first demonstration of the complete hot flow path of a multilevel micro gas turbine engine. The 0.195 cm/sup 3/ combustion chamber is shown to sustain a stable hydrogen flame over a range of operating mass flows and fuel-air mixture ratios and to produce exit gas temperatures in excess of 1600 K. It also serves as the first experimental demonstration of stable hydrocarbon microcombustion within the structural constraints of silicon. Combined with longevity tests at elevated temperatures for tens of hours, these results demonstrate the viability of a silicon-based combustion system for micro heat engine applications.

244 citations

Journal ArticleDOI
TL;DR: The selective delivery of different cell suspensions to specific locations of a tissue culture substrate resulting in micropatterns of attached cells is demonstrated and it is found that the inexpensive photoplastic yields similar replication fidelity.
Abstract: Here we demonstrate the microfabrication of deep (> 25 microns) polymeric microstructures created by replica-molding polydimethylsiloxane (PDMS) from microfabricated Si substrates. The use of PDMS structures in microfluidics and biological applications is discussed. We investigated the feasibility of two methods for the microfabrication of the Si molds: deep plasma etch of silicon-on-insulator (SOI) wafers and photolithographic patterning of a spin-coated photoplastic layer. Although the SOI wafers can be patterned at higher resolution, we found that the inexpensive photoplastic yields similar replication fidelity. The latter is mostly limited by the mechanical stability of the replicated PDMS structures. As an example, we demonstrate the selective delivery of different cell suspensions to specific locations of a tissue culture substrate resulting in micropatterns of attached cells.

237 citations

Proceedings ArticleDOI
01 Jan 1997
TL;DR: The work in progress on microelectrical and mechanical systems (MEMS)-based gas turbine engines, turbogenerators, and rocket engines currently under development at MIT is described in this paper.
Abstract: This is a report on work in progress on microelectrical and mechanical systems (MEMS)-based gas turbine engines, turbogenerators, and rocket engines currently under development at MIT. Fabricated in large numbers in parallel using semiconductor manufacturing techniques, these engines are based on micro-high speed rotating machinery with the same power density as that achieved in their more familiar, full-sized brethren. The micro-gas turbine is a 1 cm diameter by 3 mm thick SiC heat engine designed to produce 10-20 W of electric power or 0.050.1 Nt of thrust while consuming under 10 grams/hr of H 2 . Later versions may produce up to 100 W using hydrocarbon fuels. A liquid fuel, bi-propellant rocket motor of similar size could develop over 3 lb of thrust. The rocket motor would be complete with turbopumps and control valves on the same chip. These devices may enable new concepts in propulsion, fluid control, and por table power generation.

230 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: Fabrication of microfluidic devices in poly(dimethylsiloxane) (PDMS) by soft lithography provides faster, less expensive routes to devices that handle aqueous solutions.
Abstract: Microfluidic devices are finding increasing application as analytical systems, biomedical devices, tools for chemistry and biochemistry, and systems for fundamental research. Conventional methods of fabricating microfluidic devices have centered on etching in glass and silicon. Fabrication of microfluidic devices in poly(dimethylsiloxane) (PDMS) by soft lithography provides faster, less expensive routes than these conventional methods to devices that handle aqueous solutions. These soft-lithographic methods are based on rapid prototyping and replica molding and are more accessible to chemists and biologists working under benchtop conditions than are the microelectronics-derived methods because, in soft lithography, devices do not need to be fabricated in a cleanroom. This paper describes devices fabricated in PDMS for separations, patterning of biological and nonbiological material, and components for integrated systems.

3,344 citations

Journal ArticleDOI
TL;DR: The goal of this paper is not to suggest that the conversion of vibrations is the best or most versatile method to scavenge ambient power, but to study its potential as a viable power source for applications where vibrations are present.

2,727 citations

Journal ArticleDOI
TL;DR: This Account summarizes techniques for fabrication and applications in biomedicine of microfluidic devices fabricated in poly(dimethylsiloxane) (PDMS).
Abstract: This Account summarizes techniques for fabrication and applications in biomedicine of microfluidic devices fabricated in poly(dimethylsiloxane) (PDMS). The methods and applications described focus on the exploitation of the physical and chemical properties of PDMS in the fabrication or actuation of the devices. Fabrication of channels in PDMS is simple, and it can be used to incorporate other materials and structures through encapsulation or sealing (both reversible and irreversible).

2,490 citations

Journal ArticleDOI
TL;DR: A microfluidic cell culture device created with microchip manufacturing methods that contains continuously perfused chambers inhabited by living cells arranged to simulate tissue- and organ-level physiology has great potential to advance the study of tissue development, organ physiology and disease etiology.
Abstract: Organ-level physiology is recapitulated in vitro by culturing cells in perfused, microfluidic devices.

2,339 citations