scispace - formally typeset
Search or ask a question
Author

Arun Kumar Singh

Bio: Arun Kumar Singh is an academic researcher from Motilal Nehru National Institute of Technology Allahabad. The author has contributed to research in topics: Graphene & Raman spectroscopy. The author has an hindex of 20, co-authored 33 publications receiving 988 citations. Previous affiliations of Arun Kumar Singh include Sejong University & Banaras Hindu University.

Papers
More filters
Journal ArticleDOI
TL;DR: It is found that annealing in Ar atmosphere induces a p-type doping effect on Cr- or Ti-coated CVD-grown graphene, and the doping effect is also confirmed by measuring the gate voltage dependent resistivity of graphene.
Abstract: The properties of single-layer graphene are strongly affected by metal adsorbates and clusters on graphene. Here, we study the effect of a thin layer of chromium (Cr) and titanium (Ti) metals on chemical vapor deposition (CVD)-grown graphene by using Raman spectroscopy and transport measurements. The Raman spectra and transport measurements show that both Cr and Ti metals affect the structure as well as the electronic properties of the CVD-grown graphene. The shift of peak frequencies, intensities and widths of the Raman bands are analyzed after the deposition of metal films of different thickness on CVD-grown graphene. The shifts in G and 2D peak positions indicate the doping effect of graphene by Cr and Ti metals. While p-type doping was observed for Cr-coated graphene, n-type doping was observed for Ti-coated graphene. The doping effect is also confirmed by measuring the gate voltage dependent resistivity of graphene. We have also found that annealing in Ar atmosphere induces a p-type doping effect on Cr- or Ti-coated CVD-grown graphene.

142 citations

Journal ArticleDOI
TL;DR: In this article, a soluble poly-3-hexylthiophene (P3HT) based organic field effect transistors (OFETs) are fabricated and sensitivity of the device to ammonia vapour at room temperature is subsequently tested.
Abstract: The soluble poly-3-hexylthiophene (P3HT) based organic field effect transistors (OFETs) are fabricated and sensitivity of the device to ammonia vapour at room temperature is subsequently tested. The performance parameters of the OFET in air, water vapour and ammonia have been studied in order to explore the potential of this device as an ammonia sensor. The device parameters like drain–source current, mobility and threshold voltage are found to change significantly when the device is exposed to various concentrations of ammonia. The P3HT based OFET shows excellent response to ammonia in the range of 0.1–25 ppm at room temperature.

118 citations

Journal ArticleDOI
TL;DR: In this article, a review summarizes the synthesis of 2D transition metal dichalcogenides (TMDCs) by several techniques, i.e., mechanical and chemical exfoliation, RF-sputtering, atomic layer deposition (ALD) and chemical vapor deposition (CVD), etc.

103 citations

Journal ArticleDOI
TL;DR: The combined preparation route of RF sputtering and post-deposition annealing process opens up the novel possibility of mass and batch production of MoS2 film.
Abstract: We report a simple and mass-scalable approach for thin MoS2 films via RF sputtering combined with the post-deposition annealing process. We have prepared as-sputtered film using a MoS2 target in the sputtering system. The as-sputtered film was subjected to post-deposition annealing to improve crystalline quality at 700 °C in a sulfur and argon environment. The analysis confirmed the growth of continuous bilayer to few-layer MoS2 film. The mobility value of ~29 cm2/Vs and current on/off ratio on the order of ~104 were obtained for bilayer MoS2. The mobility increased up to ~173–181 cm2/Vs, respectively, for few-layer MoS2. The mobility of our bilayer MoS2 FETs is larger than any previously reported values of single to bilayer MoS2 grown on SiO2/Si substrate with a SiO2 gate oxide. Moreover, our few-layer MoS2 FETs exhibited the highest mobility value ever reported for any MoS2 FETs with a SiO2 gate oxide. It is presumed that the high mobility behavior of our film could be attributed to low charged impurities of our film and dielectric screening effect by an interfacial MoOxSiy layer. The combined preparation route of RF sputtering and post-deposition annealing process opens up the novel possibility of mass and batch production of MoS2 film.

96 citations

Journal ArticleDOI
TL;DR: In this article, the modification of the electronic properties of single layer CVD-grown graphene by molecular doping without degrading its transparency and electrical properties was reported, where the shift of G and 2D peak wave numbers and the intensity ratio of D and G peaks were analyzed as a function of reaction time.
Abstract: It is essential to tailor the electronic properties of graphene in order to apply graphene films for use in electrodes. Here we report the modification of the electronic properties of single layer chemical vapor deposition (CVD) grown graphene by molecular doping without degrading its transparency and electrical properties. Raman spectroscopy and transport measurements revealed that p-toluenesulfonic acid (PTSA) imposes n-doping on single layer CVD grown graphene. The shift of G and 2D peak wave numbers and the intensity ratio of D and G peaks are analyzed as a function of reaction time. In the gate voltage dependent resistivity measurement, it is found that the maximum resistivity corresponding to the Dirac point is shifted toward a more negative gate voltage with increasing reaction time, indicating an n-type doping effect. We have also made single layer graphene p–n junctions by chemical doping and investigated the current–voltage characteristics at the p–n junction.

60 citations


Cited by
More filters
Journal ArticleDOI
24 Nov 2015-ACS Nano
TL;DR: Insight is provided into the theoretical modeling and understanding of the van der Waals forces that hold together the 2D layers in bulk solids, as well as their excitonic properties and growth morphologies.
Abstract: The isolation of graphene in 2004 from graphite was a defining moment for the “birth” of a field: two-dimensional (2D) materials In recent years, there has been a rapidly increasing number of papers focusing on non-graphene layered materials, including transition-metal dichalcogenides (TMDs), because of the new properties and applications that emerge upon 2D confinement Here, we review significant recent advances and important new developments in 2D materials “beyond graphene” We provide insight into the theoretical modeling and understanding of the van der Waals (vdW) forces that hold together the 2D layers in bulk solids, as well as their excitonic properties and growth morphologies Additionally, we highlight recent breakthroughs in TMD synthesis and characterization and discuss the newest families of 2D materials, including monoelement 2D materials (ie, silicene, phosphorene, etc) and transition metal carbide- and carbon nitride-based MXenes We then discuss the doping and functionalization of 2

2,036 citations

Journal ArticleDOI
TL;DR: The functioning principles of electronic sensors based on organic semiconductor field-effect transistors (OFETs) are presented and the perspective use of such devices in point-of-care is introduced after some basics on analytical biosensing systems are provided.
Abstract: The functioning principles of electronic sensors based on organic semiconductor field-effect transistors (OFETs) are presented. The focus is on biological sensors but also chemical ones are reviewed to address general features. The field-induced electronic transport and the chemical and biological interactions for the sensing, each occurring at the relevant functional interface, are separately introduced. Once these key learning points have been acquired, the combined picture for the FET electronic sensing is proposed. The perspective use of such devices in point-of-care is introduced, after some basics on analytical biosensing systems are provided as well. This tutorial review includes also a necessary overview of the OFET sensing structures, but the focus will be on electronic rather than electrochemical detection. The differences among the structures are highlighted along with the implications on the performance level in terms of key analytical figures of merit such as: repeatability, sensitivity and selectivity.

698 citations

Journal ArticleDOI
TL;DR: In this article, a review of the state-of-the-art for the chemical functionalization of graphite, graphene, graphite oxide, and graphite-based nanomaterials is presented.
Abstract: The chemical production of graphene as well as its controlled wet chemical modification is a challenge for synthetic chemists. Furthermore, the characterization of reaction products requires sophisticated analytical methods. In this Review we first describe the structure of graphene and graphene oxide and then outline the most important synthetic methods that are used for the production of these carbon-based nanomaterials. We summarize the state-of-the-art for their chemical functionalization by noncovalent and covalent approaches. We put special emphasis on the differentiation of the terms graphite, graphene, graphite oxide, and graphene oxide. An improved fundamental knowledge of the structure and the chemical properties of graphene and graphene oxide is an important prerequisite for the development of practical applications.

690 citations

Journal ArticleDOI
TL;DR: The FTIR vibrational spectroscopy is presented, without claiming to cover entire field, for the characterization of diamond, amorphous carbon, graphite, graphene, carbon nanotubes, fullerene and carbon quantum dots.
Abstract: Fourier transform Infrared (FTIR) spectroscopy is a versatile technique for the characterization of materials belonging to the carbon family. Based on the interaction of the IR radiation with matter this technique may be used for the identification and characterization of chemical structures. Most important features of this method are: non-destructive, real-time measurement and relatively easy to use. Carbon basis for all living systems has found numerous industrial applications from carbon coatings (i.e. amorphous and nanocrystalline carbon films: diamond-like carbon (DLC) films) to nanostructured materials (fullerenes, nanotubes, graphene) and carbon materials at nanoscale or carbon dots (CDots). In this paper, we present the FTIR vibrational spectroscopy for the characterization of diamond, amorphous carbon, graphite, graphene, carbon nanotubes (CNTs), fullerene and carbon quantum dots (CQDs), without claiming to cover entire field.

660 citations

Journal ArticleDOI
TL;DR: The structure of graphene and graphene oxide is described and the most important synthetic methods used for the production of these carbon-based nanomaterials are outlined and the state-of-the-art for their chemical functionalization by noncovalent and covalent approaches are summarized.
Abstract: The chemical production of graphene as well as its controlled wet- chemical modification is a challenge for synthetic chemists and the characterization of reaction products requires sophisticated analytic methods. In this review we first describe the structure of graphene and graphene oxide. We then outline the most important synthetic methods which are used for the production of these carbon based nanomaterials. We summarize the state-of-the-art for their chemical functionalization by non-covalent and covalent approaches. We put special emphasis on the differentiation of the terms graphite, graphene, graphite oxide and graphene oxide. An improved fundamental knowledge about the structure and the chemical properties of graphene and graphene oxide is an important prerequisite for the development of practical applications.

598 citations