scispace - formally typeset
Search or ask a question
Author

Arun N. Swami

Other affiliations: Stanford University, Xerox, LinkedIn  ...read more
Bio: Arun N. Swami is an academic researcher from IBM. The author has contributed to research in topics: Query optimization & Association rule learning. The author has an hindex of 27, co-authored 38 publications receiving 21445 citations. Previous affiliations of Arun N. Swami include Stanford University & Xerox.

Papers
More filters
Proceedings ArticleDOI
01 Jun 1993
TL;DR: An efficient algorithm is presented that generates all significant association rules between items in the database of customer transactions and incorporates buffer management and novel estimation and pruning techniques.
Abstract: We are given a large database of customer transactions. Each transaction consists of items purchased by a customer in a visit. We present an efficient algorithm that generates all significant association rules between items in the database. The algorithm incorporates buffer management and novel estimation and pruning techniques. We also present results of applying this algorithm to sales data obtained from a large retailing company, which shows the effectiveness of the algorithm.

15,645 citations

Book ChapterDOI
13 Oct 1993
TL;DR: An indexing method for time sequences for processing similarity queries using R * -trees to index the sequences and efficiently answer similarity queries and provides experimental results which show that the method is superior to search based on sequential scanning.
Abstract: We propose an indexing method for time sequences for processing similarity queries. We use the Discrete Fourier Transform (DFT) to map time sequences to the frequency domain, the crucial observation being that, for most sequences of practical interest, only the first few frequencies are strong. Another important observation is Parseval's theorem, which specifies that the Fourier transform preserves the Euclidean distance in the time or frequency domain. Having thus mapped sequences to a lower-dimensionality space by using only the first few Fourier coefficients, we use R * -trees to index the sequences and efficiently answer similarity queries. We provide experimental results which show that our method is superior to search based on sequential scanning. Our experiments show that a few coefficients (1–3) are adequate to provide good performance. The performance gain of our method increases with the number and length of sequences.

2,082 citations

Journal ArticleDOI
TL;DR: The authors' perspective of database mining as the confluence of machine learning techniques and the performance emphasis of database technology is presented and an algorithm for classification obtained by combining the basic rule discovery operations is given.
Abstract: The authors' perspective of database mining as the confluence of machine learning techniques and the performance emphasis of database technology is presented. Three classes of database mining problems involving classification, associations, and sequences are described. It is argued that these problems can be uniformly viewed as requiring discovery of rules embedded in massive amounts of data. A model and some basic operations for the process of rule discovery are described. It is shown how the database mining problems considered map to this model, and how they can be solved by using the basic operations proposed. An example is given of an algorithm for classification obtained by combining the basic rule discovery operations. This algorithm is efficient in discovering classification rules and has accuracy comparable to ID3, one of the best current classifiers. >

1,539 citations

Proceedings ArticleDOI
07 Apr 1997
TL;DR: The authors present a geometric-based algorithm, BitOp, for performing the clustering, embedded within an association rule clustering system, ARCS, and measure the quality of the segmentation generated by ARCS using the minimum description length (MDL) principle of encoding the clusters on several databases.
Abstract: The authors consider the problem of clustering two-dimensional association rules in large databases. They present a geometric-based algorithm, BitOp, for performing the clustering, embedded within an association rule clustering system, ARCS. Association rule clustering is useful when the user desires to segment the data. They measure the quality of the segmentation generated by ARCS using the minimum description length (MDL) principle of encoding the clusters on several databases including noise and errors. Scale-up experiments show that ARCS, using the BitOp algorithm, scales linearly with the amount of data.

419 citations

Proceedings ArticleDOI
06 Mar 1995
TL;DR: This paper shows that at least some aspects of data mining can be carried out by using general query languages such as SQL, rather than by developing specialized black-box algorithms.
Abstract: Describe set-oriented algorithms for mining association rules. Such algorithms imply performing multiple joins and may appear to be inherently less efficient than special-purpose algorithms. We develop new algorithms that can be expressed as SQL queries, and discuss the optimization of these algorithms. After analytical evaluation, an algorithm named SETM emerges as the algorithm of choice. SETM uses only simple database primitives, viz. sorting and merge-scan join. SETM is simple, fast and stable over the range of parameter values. The major contribution of this paper is that it shows that at least some aspects of data mining can be carried out by using general query languages such as SQL, rather than by developing specialized black-box algorithms. The set-oriented nature of SETM facilitates the development of extensions. >

320 citations


Cited by
More filters
Book
08 Sep 2000
TL;DR: This book presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects, and provides a comprehensive, practical look at the concepts and techniques you need to get the most out of real business data.
Abstract: The increasing volume of data in modern business and science calls for more complex and sophisticated tools. Although advances in data mining technology have made extensive data collection much easier, it's still always evolving and there is a constant need for new techniques and tools that can help us transform this data into useful information and knowledge. Since the previous edition's publication, great advances have been made in the field of data mining. Not only does the third of edition of Data Mining: Concepts and Techniques continue the tradition of equipping you with an understanding and application of the theory and practice of discovering patterns hidden in large data sets, it also focuses on new, important topics in the field: data warehouses and data cube technology, mining stream, mining social networks, and mining spatial, multimedia and other complex data. Each chapter is a stand-alone guide to a critical topic, presenting proven algorithms and sound implementations ready to be used directly or with strategic modification against live data. This is the resource you need if you want to apply today's most powerful data mining techniques to meet real business challenges. * Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects. * Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields. *Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of real business data

23,600 citations

Book
25 Oct 1999
TL;DR: This highly anticipated third edition of the most acclaimed work on data mining and machine learning will teach you everything you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining.
Abstract: Data Mining: Practical Machine Learning Tools and Techniques offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. This highly anticipated third edition of the most acclaimed work on data mining and machine learning will teach you everything you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining. Thorough updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including new material on Data Transformations, Ensemble Learning, Massive Data Sets, Multi-instance Learning, plus a new version of the popular Weka machine learning software developed by the authors. Witten, Frank, and Hall include both tried-and-true techniques of today as well as methods at the leading edge of contemporary research. *Provides a thorough grounding in machine learning concepts as well as practical advice on applying the tools and techniques to your data mining projects *Offers concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods *Includes downloadable Weka software toolkit, a collection of machine learning algorithms for data mining tasks-in an updated, interactive interface. Algorithms in toolkit cover: data pre-processing, classification, regression, clustering, association rules, visualization

20,196 citations

Proceedings ArticleDOI
01 Jun 1993
TL;DR: An efficient algorithm is presented that generates all significant association rules between items in the database of customer transactions and incorporates buffer management and novel estimation and pruning techniques.
Abstract: We are given a large database of customer transactions. Each transaction consists of items purchased by a customer in a visit. We present an efficient algorithm that generates all significant association rules between items in the database. The algorithm incorporates buffer management and novel estimation and pruning techniques. We also present results of applying this algorithm to sales data obtained from a large retailing company, which shows the effectiveness of the algorithm.

15,645 citations

Proceedings Article
01 Jul 1998
TL;DR: Two new algorithms for solving thii problem that are fundamentally different from the known algorithms are presented and empirical evaluation shows that these algorithms outperform theknown algorithms by factors ranging from three for small problems to more than an order of magnitude for large problems.
Abstract: We consider the problem of discovering association rules between items in a large database of sales transactions. We present two new algorithms for solving thii problem that are fundamentally different from the known algorithms. Empirical evaluation shows that these algorithms outperform the known algorithms by factors ranging from three for small problems to more than an order of magnitude for large problems. We also show how the best features of the two proposed algorithms can be combined into a hybrid algorithm, called AprioriHybrid. Scale-up experiments show that AprioriHybrid scales linearly with the number of transactions. AprioriHybrid also has excellent scale-up properties with respect to the transaction size and the number of items in the database.

10,863 citations