scispace - formally typeset
Search or ask a question
Author

Arvind Agarwal

Bio: Arvind Agarwal is an academic researcher from Florida International University. The author has contributed to research in topics: Coating & Carbon nanotube. The author has an hindex of 58, co-authored 325 publications receiving 12365 citations. Previous affiliations of Arvind Agarwal include Motilal Nehru National Institute of Technology Allahabad & Deakin University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a review summarises the research work carried out in the field of carbon nanotube (CNT) metal matrix composites (MMCs), focusing on the critical issues of CNT-reinforced MMCs that include processing techniques, nanotubes dispersion, interface, strengthening mechanisms and mechanical properties.
Abstract: This review summarises the research work carried out in the field of carbon nanotube (CNT) metal matrix composites (MMCs). Much research has been undertaken in utilising CNTs as reinforcement for composite material. However, CNT-reinforced MMCs have received the least attention. These composites are being projected for use in structural applications for their high specific strength as well as functional materials for their exciting thermal and electrical characteristics. The present review focuses on the critical issues of CNT-reinforced MMCs that include processing techniques, nanotube dispersion, interface, strengthening mechanisms and mechanical properties. Processing techniques used for synthesis of the composites have been critically reviewed with an objective to achieve homogeneous distribution of carbon nanotubes in the matrix. The mechanical property improvements achieved by addition of CNTs in various metal matrix systems are summarised. The factors determining strengthening achieved by CNT reinforcement are elucidated as are the structural and chemical stability of CNTs in different metal matrixes and the importance of the CNT/metal interface has been reviewed. The importance of CNT dispersion and its quantification is highlighted. Carbon nanotube reinforced MMCs as functional materials are summarised. Future work that needs attention is addressed.

1,265 citations

Journal ArticleDOI
TL;DR: The use of graphene as reinforcement for structural materials is motivated by their exceptional mechanical/functional properties and their unique physical/chemical characteristics as discussed by the authors. But this review focuses on MMCs and CMCs because of their technological importance for structural applications and the unique challenges associated with developing high-temperature composites with nanoparticle reinforcements.
Abstract: This review critically examines the current state of graphene reinforced metal (GNP-MMC) and ceramic matrix composites (GNP-CMC) The use of graphene as reinforcement for structural materials is motivated by their exceptional mechanical/functional properties and their unique physical/chemical characteristics This review focuses on MMCs and CMCs because of their technological importance for structural applications and the unique challenges associated with developing high-temperature composites with nanoparticle reinforcements The review discusses processing techniques, effects of graphene on the mechanical behaviour of GNP-MMCs and GNP-CMCs, including early studies on the tribological performance of graphene-reinforced composites, where graphene has shown signs of serving as a protective and lubricious phase Additionally, the unique functional properties endowed by graphene to GNP-MMCs and GNP-CMCs, such as enhanced thermal/electrical conductivity, improved oxidation resistance, and excellent bi

456 citations

Journal ArticleDOI
TL;DR: In this article, the results from numerous studies on various methods for manufacturing nanocomposites with improved properties and retained nanostructures are discussed in detail in detail and recent advances are discussed.
Abstract: Of late, nanotechnology seems to be rapidly thrusting its applications in all aspects of life including engineering and medicine. Materials science and engineering has experienced a tremendous growth in the field of nanocomposite development with enhanced chemical, mechanical, and physical properties. A wide array of research has been conducted in the processing of nanocomposites. Consolidation of these systems from loose particles to bulk free form entities has always been a challenge. To name a few, traditional consolidation techniques such as cold pressing and sintering at high temperatures, hot pressing, and hot isostatic pressing have strong limitations of not being able to retain the nanoscale grain size due to the excessive grain growth during processing. This article reviews in detail the results from numerous studies on various methods for manufacturing nanocomposites with improved properties and retained nanostructures. Both challenges and recent advances are discussed in detail in this review.

454 citations

Journal ArticleDOI
TL;DR: This work successfully distributing multiwalled CNT reinforcement in HA coating using plasma spraying to improve the fracture toughness and enhance crystallinity and culturing human osteoblast hFOB 1.19 cells onto CNT reinforced HA coating to elicit its biocompatibility with living cells.

428 citations

Journal ArticleDOI
01 Feb 2011-Carbon
TL;DR: In this paper, the effects of CNT dispersion, processing technique, degree of deformation and CNT-matrix interface on the elastic modulus, strength and toughness of composites are analyzed.

425 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
01 Feb 2013-Science
TL;DR: Although not yet providing compelling mechanical strength or electrical or thermal conductivities for many applications, CNT yarns and sheets already have promising performance for applications including supercapacitors, actuators, and lightweight electromagnetic shields.
Abstract: Worldwide commercial interest in carbon nanotubes (CNTs) is reflected in a production capacity that presently exceeds several thousand tons per year. Currently, bulk CNT powders are incorporated in diverse commercial products ranging from rechargeable batteries, automotive parts, and sporting goods to boat hulls and water filters. Advances in CNT synthesis, purification, and chemical modification are enabling integration of CNTs in thin-film electronics and large-area coatings. Although not yet providing compelling mechanical strength or electrical or thermal conductivities for many applications, CNT yarns and sheets already have promising performance for applications including supercapacitors, actuators, and lightweight electromagnetic shields.

4,596 citations

01 Jun 2005

3,154 citations

01 Dec 1991
TL;DR: In this article, self-assembly is defined as the spontaneous association of molecules under equilibrium conditions into stable, structurally well-defined aggregates joined by noncovalent bonds.
Abstract: Molecular self-assembly is the spontaneous association of molecules under equilibrium conditions into stable, structurally well-defined aggregates joined by noncovalent bonds. Molecular self-assembly is ubiquitous in biological systems and underlies the formation of a wide variety of complex biological structures. Understanding self-assembly and the associated noncovalent interactions that connect complementary interacting molecular surfaces in biological aggregates is a central concern in structural biochemistry. Self-assembly is also emerging as a new strategy in chemical synthesis, with the potential of generating nonbiological structures with dimensions of 1 to 10(2) nanometers (with molecular weights of 10(4) to 10(10) daltons). Structures in the upper part of this range of sizes are presently inaccessible through chemical synthesis, and the ability to prepare them would open a route to structures comparable in size (and perhaps complementary in function) to those that can be prepared by microlithography and other techniques of microfabrication.

2,591 citations