scispace - formally typeset
Search or ask a question
Author

Arvind Sundararajan

Bio: Arvind Sundararajan is an academic researcher from Stanford University. The author has contributed to research in topics: Structural health monitoring & Wireless. The author has an hindex of 9, co-authored 10 publications receiving 545 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Local execution of the embedded damage detection method is shown to save energy by avoiding utilization of the wireless channel to transmit raw time-history data.
Abstract: A low-cost wireless sensing unit is designed and fabricated for deployment as the building block of wireless structural health monitoring systems. Finite operational lives of portable power supplies, such as batteries, necessitate optimization of the wireless sensing unit design to attain overall energy efficiency. This is in conflict with the need for wireless radios that have far-reaching communication ranges that require significant amounts of power. As a result, a penalty is incurred by transmitting raw time-history records using scarce system resources such as battery power and bandwidth. Alternatively, a computational core that can accommodate local processing of data is designed and implemented in the wireless sensing unit. The role of the computational core is to perform interrogation tasks of collected raw time-history data and to transmit via the wireless channel the analysis results rather than time-history records. To illustrate the ability of the computational core to execute such embedded engineering analyses, a two-tiered time-series damage detection algorithm is implemented as an example. Using a lumped-mass laboratory structure, local execution of the embedded damage detection method is shown to save energy by avoiding utilization of the wireless channel to transmit raw time-history data.

204 citations

Journal ArticleDOI
TL;DR: To illustrate the computational capabilities of the proposed wireless sensing unit, the fast Fourier transform and auto- regressive time-series modeling are locally executed by the unit and suggest strong potential for unit installation in automated structural health monitoring systems.
Abstract: Complementing recent advances made in the field of structural health monitoring and damage detection, the concept of a wireless sensing network with distributed computational power is proposed. The fundamental building block of the proposed sensing network is a wireless sensing unit capable of acquiring measurement data, interrogating the data and transmitting the data in real time. The computational core of a prototype wireless sensing unit can potentially be utilized for execution of embedded engineering analyses such as damage detection and system identification. To illustrate the computational capabilities of the proposed wireless sensing unit, the fast Fourier transform and auto- regressive time-series modeling are locally executed by the unit. Fast Fourier transforms and auto- regressive models are two important techniques that have been previously used for the identification of damage in structural systems. Their embedment illustrates the computational capabilities of the prototype wireless sensing unit and suggests strong potential for unit installation in automated structural health monitoring systems.

111 citations

Proceedings ArticleDOI
19 Aug 2003
TL;DR: In this article, a state-of-the-art design of a wireless sensing unit, which serves as the fundamental building block of wireless modular monitoring systems (WiMMS), has been optimized for structural sensing applications.
Abstract: A state-of-art design of a wireless sensing unit, which serves as the fundamental building block of wireless modular monitoring systems (WiMMS), has been optimized for structural sensing applications. Employing wireless communications as a primary means of data transfer, the high-cost but fragile cables of traditional tethered monitoring systems is eradicated resulting in a low-cost and flexible monitoring infrastructure. An additional innovation is the inclusion of advanced embedded microcontrollers to accommodate the computational tasks of engineering and decision support analysis. To quantify the performance of the wireless sensing unit, field validation upon a full-scale benchmark structure is undertaken. The Alamosa Canyon Bridge in New Mexico is instrumented with wireless sensing units and a traditional cable-based monitoring system in parallel. Forced vibrations are applied to the bridge and monitored using both (wireless and tethered) data acquisition systems. Recorded time-history measurements are used to identify the modal properties of the structural system. The performance of the wireless sensing units is compared to that of the commercial wire-based monitoring system.

95 citations

Proceedings ArticleDOI
21 Jul 2004
TL;DR: In this paper, a computational framework for analyzing piezoelectric based active sensor signals for indications of structural damage is proposed, which can be used to execute embedded damage detection analyses.
Abstract: Many academic and commercial researchers are exploring the design and deployment of wireless sensors that can be used for structural monitoring. The concept of intelligent wireless sensors can be further extended to include actuation capabilities. In this study, the design of a wireless sensing unit that has the capability to command active sensors and actuators is proposed for structural monitoring applications. Active sensors are sensors that can input excitations into a structural system and simultaneously monitor the corresponding system's response. The computational core of the wireless active sensing unit is capable of interrogating response data in real time and can be used to execute embedded damage detection analyses. With high-order vibration modes of structural elements exhibiting greater sensitivity to damage than global structural modes, wireless active sensors can play a major role in a structural health monitoring system because they are capable of exciting high-order modes. A computational framework for analyzing piezoelectric based active sensor signals for indications of structural damage is proposed. For illustration, a simple aluminum plate with piezoelectric active sensors mounted to its surface is used.

50 citations

Proceedings ArticleDOI
28 Jun 2002
TL;DR: In this article, a wireless sensing unit for use in a Wireless Modular Monitoring System (WiMMS) has been designed and constructed, which represents a high-performance yet low-cost solution to monitor the short-term and long-term performance of structures.
Abstract: A wireless sensing unit for use in a Wireless Modular Monitoring System (WiMMS) has been designed and constructed. Drawing upon advanced technological developments in the areas of wireless communications, low-power microprocessors and micro-electro mechanical system (MEMS) sensing transducers, the wireless sensing unit represents a high-performance yet low-cost solution to monitoring the short-term and long-term performance of structures. A sophisticated reduced instruction set computer (RISC) microcontroller is placed at the core of the unit to accommodate on-board computations, measurement filtering and data interrogation algorithms. The functionality of the wireless sensing unit is validated through various experiments involving multiple sensing transducers interfaced to the sensing unit. In particular, MEMS-based accelerometers are used as the primary sensing transducer in this study's validation experiments. A five degree of freedom scaled test structure mounted upon a shaking table is employed for system validation.

44 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper is intended to serve as a summary review of the collective experience the structural engineering community has gained from the use of wireless sensors and sensor networks for monitoring structural performance and health.
Abstract: In recent years, there has been an increasing interest in the adoption of emerging sensing technologies for instrumentation within a variety of structural systems. Wireless sensors and sensor networks are emerging as sensing paradigms that the structural engineering field has begun to consider as substitutes for traditional tethered monitoring systems. A benefit of wireless structural monitoring systems is that they are inexpensive to install because extensive wiring is no longer required between sensors and the data acquisition system. Researchers are discovering that wireless sensors are an exciting technology that should not be viewed as simply a substitute for traditional tethered monitoring systems. Rather, wireless sensors can play greater roles in the processing of structural response data; this feature can be utilized to screen data for signs of structural damage. Also, wireless sensors have limitations that require novel system architectures and modes of operation. This paper is intended to serve as a summary review of the collective experience the structural engineering community has gained from the use of wireless sensors and sensor networks for monitoring structural performance and health.

1,497 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present an overview of current research and development in the field of structural health monitoring with civil engineering applications, including building, piles, bridges, pipelines, tunnels, and dams.

838 citations

01 Jan 2003
TL;DR: In this article, a survey of 1/f noise in homogeneous semiconductor samples is presented, where a distinction is made between mobility noise and number noise, and it is shown that there always is mobility noise with an /spl alpha/ value with a magnitude in the order of 10/sup -4/.
Abstract: This survey deals with 1/f noise in homogeneous semiconductor samples. A distinction is made between mobility noise and number noise. It is shown that there always is mobility noise with an /spl alpha/ value with a magnitude in the order of 10/sup -4/. Damaging the crystal has a strong influence on /spl alpha/, /spl alpha/ may increase by orders of magnitude. Some theoretical models are briefly discussed none of them can explain all experimental results. The /spl alpha/ values of several semiconductors are given. These values can be used in calculations of 1/f noise in devices. >

523 citations

Journal ArticleDOI
TL;DR: An overview of recent advances in computer vision techniques as they apply to the problem of civil infrastructure condition assessment and some of the key challenges that persist toward the goal of automated vision-based civil infrastructure and monitoring are presented.

500 citations

Journal ArticleDOI
TL;DR: Structural health monitoring and damage detection techniques are tools of great importance in the off-shore, civil, mechanical and aeronautical engineering communities, both for safety reasons and because of the economic benefits that can result.
Abstract: Structural health monitoring and damage detection techniques are tools of great importance in the off-shore, civil, mechanical and aeronautical engineering communities, both for safety reasons and because of the economic benefits that can result. The need to be able to detect damage in complex structures has led to the development of a vast range of techniques, of which many are based upon structural vibration analysis. In the present article, some of the latest advances in Structural Health Monitoring and Damage Detection are reviewed, with an emphasis on composite structures on the grounds that this class of materials currently has a wide range of engineering applications. FOREWORD-It should be noted that this review is not intended to be a general, all-encompassing review covering the whole range of structural health monitoring (SHM); it was planned as the starting point for a study focusing on damage detection, localization and assessment for certain kinds of structure. Thus, the line of thought behind the search and the structure of this review is a result of objectives beyond the scope of the paper itself. Nevertheless, it was considered that, once the above was understood, an updated synopsis such as this could also be useful for other researchers in the same field. ©2006 SAGE Publications.

468 citations