scispace - formally typeset
Search or ask a question
Author

AsaHG Gray

Bio: AsaHG Gray is an academic researcher. The author has contributed to research in topics: Darwin (ADL) & Natural theology. The author has an hindex of 1, co-authored 2 publications receiving 2731 citations.

Papers
More filters

Cited by
More filters
Book
John R. Koza1
01 Jan 1992
TL;DR: This book discusses the evolution of architecture, primitive functions, terminals, sufficiency, and closure, and the role of representation and the lens effect in genetic programming.
Abstract: Background on genetic algorithms, LISP, and genetic programming hierarchical problem-solving introduction to automatically-defined functions - the two-boxes problem problems that straddle the breakeven point for computational effort Boolean parity functions determining the architecture of the program the lawnmower problem the bumblebee problem the increasing benefits of ADFs as problems are scaled up finding an impulse response function artificial ant on the San Mateo trail obstacle-avoiding robot the minesweeper problem automatic discovery of detectors for letter recognition flushes and four-of-a-kinds in a pinochle deck introduction to biochemistry and molecular biology prediction of transmembrane domains in proteins prediction of omega loops in proteins lookahead version of the transmembrane problem evolutionary selection of the architecture of the program evolution of primitives and sufficiency evolutionary selection of terminals evolution of closure simultaneous evolution of architecture, primitive functions, terminals, sufficiency, and closure the role of representation and the lens effect Appendices: list of special symbols list of special functions list of type fonts default parameters computer implementation annotated bibliography of genetic programming electronic mailing list and public repository

13,487 citations

01 Jan 1984
TL;DR: The adaptationist programme is faulted for its failure to distinguish current utility from reasons for origin, and Darwin’s own pluralistic approach to identifying the agents of evolutionary change is supported.
Abstract: An adaptationist programme has dominated evolutionary thought in England and the United States during the past 40 years. It is based on faith in the power of natural selection as an optimizing agent. It proceeds by breaking an organism into unitary ‘traits’ and proposing an adaptive story for each considered separately. Trade-offs among competing selective demands exert the only brake upon perfection; non-optimality is thereby rendered as a result of adaptation as well. We criticize this approach and attempt to reassert a competing notion (long popular in continental Europe) that organisms must be analysed as integrated wholes, with Baupläne so constrained by phyletic heritage, pathways of development and general architecture that the constraints themselves become more interesting and more important in delimiting pathways of change than the selective force that may mediate change when it occurs. We fault the adaptationist programme for its failure to distinguish current utility from reasons for origin (male tyrannosaurs may have used their diminutive front legs to titillate female partners, but this will not explain why they got so small); for its unwillingness to consider alternatives to adaptive stories; for its reliance upon plausibility alone as a criterion for accepting speculative tales; and for its failure to consider adequately such competing themes as random fixation of alleles, production of non-adaptive structures by developmental correlation with selected features (allometry, pleiotropy, material compensation, mechanically forced correlation), the separability of adaptation and selection, multiple adaptive peaks, and current utility as an epiphenomenon of non-adaptive structures. We support Darwin’s own pluralistic approach to identifying the agents of evolutionary change.

5,926 citations

Journal ArticleDOI
24 Jul 2009-Science
TL;DR: A general framework is used to identify 10 subsystem variables that affect the likelihood of self-organization in efforts to achieve a sustainable SES.
Abstract: A major problem worldwide is the potential loss of fisheries, forests, and water resources Understanding of the processes that lead to improvements in or deterioration of natural resources is limited, because scientific disciplines use different concepts and languages to describe and explain complex social-ecological systems (SESs) Without a common framework to organize findings, isolated knowledge does not cumulate Until recently, accepted theory has assumed that resource users will never self-organize to maintain their resources and that governments must impose solutions Research in multiple disciplines, however, has found that some government policies accelerate resource destruction, whereas some resource users have invested their time and energy to achieve sustainability A general framework is used to identify 10 subsystem variables that affect the likelihood of self-organization in efforts to achieve a sustainable SES

5,442 citations

Journal ArticleDOI
TL;DR: It is proposed that temperament can and should be studied within an evolutionary ecology framework and provided a terminology that could be used as a working tool for ecological studies of temperament, which includes five major temperament trait categories: shyness‐boldness, exploration‐avoidance, activity, sociability and aggressiveness.
Abstract: Temperament describes the idea that individual behavioural differences are repeatable over time and across situations. This common phenomenon covers numerous traits, such as aggressiveness, avoidance of novelty, willingness to take risks, exploration, and sociality. The study of temperament is central to animal psychology, behavioural genetics, pharmacology, and animal husbandry, but relatively few studies have examined the ecology and evolution of temperament traits. This situation is surprising, given that temperament is likely to exert an important influence on many aspects of animal ecology and evolution, and that individual variation in temperament appears to be pervasive amongst animal species. Possible explanations for this neglect of temperament include a perceived irrelevance, an insufficient understanding of the link between temperament traits and fitness, and a lack of coherence in terminology with similar traits often given different names, or different traits given the same name. We propose that temperament can and should be studied within an evolutionary ecology framework and provide a terminology that could be used as a working tool for ecological studies of temperament. Our terminology includes five major temperament trait categories: shyness-boldness, exploration-avoidance, activity, sociability and aggressiveness. This terminology does not make inferences regarding underlying dispositions or psychological processes, which may have restrained ecologists and evolutionary biologists from working on these traits. We present extensive literature reviews that demonstrate that temperament traits are heritable, and linked to fitness and to several other traits of importance to ecology and evolution. Furthermore, we describe ecologically relevant measurement methods and point to several ecological and evolutionary topics that would benefit from considering temperament, such as phenotypic plasticity, conservation biology, population sampling, and invasion biology.

2,860 citations

Book
22 Jun 2009
TL;DR: This book provides a complete background on metaheuristics and shows readers how to design and implement efficient algorithms to solve complex optimization problems across a diverse range of applications, from networking and bioinformatics to engineering design, routing, and scheduling.
Abstract: A unified view of metaheuristics This book provides a complete background on metaheuristics and shows readers how to design and implement efficient algorithms to solve complex optimization problems across a diverse range of applications, from networking and bioinformatics to engineering design, routing, and scheduling. It presents the main design questions for all families of metaheuristics and clearly illustrates how to implement the algorithms under a software framework to reuse both the design and code. Throughout the book, the key search components of metaheuristics are considered as a toolbox for: Designing efficient metaheuristics (e.g. local search, tabu search, simulated annealing, evolutionary algorithms, particle swarm optimization, scatter search, ant colonies, bee colonies, artificial immune systems) for optimization problems Designing efficient metaheuristics for multi-objective optimization problems Designing hybrid, parallel, and distributed metaheuristics Implementing metaheuristics on sequential and parallel machines Using many case studies and treating design and implementation independently, this book gives readers the skills necessary to solve large-scale optimization problems quickly and efficiently. It is a valuable reference for practicing engineers and researchers from diverse areas dealing with optimization or machine learning; and graduate students in computer science, operations research, control, engineering, business and management, and applied mathematics.

2,735 citations